Direction angles are the angles between a given vector \(\vec{v}\) and each coordinate axis (usually in three dimensions, so there are three of them). Basically, we use the equation for the angle between vectors to get the direction cosine equations and the direction angles. For example, to find the direction cosine and the direction angle between a vector \(\vec{v}\) and the x-axis, we have
\(\displaystyle{ \cos(\alpha) = \frac{\vec{v} \cdot \hat{i}}{\norm{\vec{v}} \norm{\hat{i}}} }\)
Let's label the components of \(\vec{v}\) as \(\vec{v} = v_1\hat{i} + v_2\hat{j} + v_3\hat{k} \)
Since \(\hat{i}\) is the unit vector in the direction of the x-axis, we can write \(\hat{i} = 1\hat{i} + 0\hat{j} + 0\hat{k}\) and \( \|\hat{i}\| = 1\).
\(\displaystyle{ \cos(\alpha) = \frac{\vec{v} \cdot \hat{i}}{\|\vec{v}\| \|\hat{i}\|} = \frac{v_1}{\|\vec{v}\|} }\)
Similar results can be obtained for the other two angles. Most textbooks and mathematicians use special greek letters for these angles as listed below.
Recommended Books on Amazon (affiliate links) | ||
---|---|---|
Join Amazon Student - FREE Two-Day Shipping for College Students |
Angle Description | Direction Cosine | Direction Angle | ||
---|---|---|---|---|
\(\alpha\) is the angle between \(\vec{v}\) and \(\hat{i}\) | \(\displaystyle{ \cos(\alpha) = \frac{v_1}{\|\vec{v}\|} }\) | \(\displaystyle{ \alpha = \arccos\left(\frac{v_1}{\|\vec{v}\|} \right) }\) | ||
\(\beta\) is the angle between \(\vec{v}\) and \(\hat{j}\) | \(\displaystyle{ \cos(\beta) = \frac{v_2}{\|\vec{v}\|} }\) | \(\displaystyle{ \beta = \arccos\left(\frac{v_2}{\|\vec{v}\|} \right) }\) | ||
\(\gamma\) is the angle between \(\vec{v}\) and \(\hat{k}\) | \(\displaystyle{ \cos(\gamma) = \frac{v_3}{\|\vec{v}\|} }\) | \(\displaystyle{ \gamma = \arccos\left(\frac{v_3}{\|\vec{v}\|} \right) }\) |
Study Hint: Since you already need to know the equation for the angle between two vectors, just remember what the direction cosines and direction angles are. You can derive the equations in the above table from that information. Additionally, if you just memorize the equations, you may not remember what they represent or where they come from. What are you going to do when your instructor asks you to define they mean and where they come from?
Practice
Find the direction angle of \( 3 \vhat{i} - 4\vhat{j} \).
Problem Statement |
---|
Find the direction angle of \( 3 \vhat{i} - 4\vhat{j} \).
Solution |
---|
video by Larson Calculus |
---|
Log in to rate this practice problem and to see it's current rating. |
---|
Really UNDERSTAND Calculus
external links you may find helpful |
---|
The Unit Circle
The Unit Circle [wikipedia]
Basic Trig Identities
Set 1 - basic identities | |||
---|---|---|---|
\(\displaystyle{ \tan(t) = \frac{\sin(t)}{\cos(t)} }\) |
\(\displaystyle{ \cot(t) = \frac{\cos(t)}{\sin(t)} }\) |
\(\displaystyle{ \sec(t) = \frac{1}{\cos(t)} }\) |
\(\displaystyle{ \csc(t) = \frac{1}{\sin(t)} }\) |
Set 2 - squared identities | ||
---|---|---|
\( \sin^2t + \cos^2t = 1\) |
\( 1 + \tan^2t = \sec^2t\) |
\( 1 + \cot^2t = \csc^2t\) |
Set 3 - double-angle formulas | |
---|---|
\( \sin(2t) = 2\sin(t)\cos(t)\) |
\(\displaystyle{ \cos(2t) = \cos^2(t) - \sin^2(t) }\) |
Set 4 - half-angle formulas | |
---|---|
\(\displaystyle{ \sin^2(t) = \frac{1-\cos(2t)}{2} }\) |
\(\displaystyle{ \cos^2(t) = \frac{1+\cos(2t)}{2} }\) |
Trig Derivatives
\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\) |
\(\displaystyle{ \frac{d[\cos(t)]}{dt} = -\sin(t) }\) | |
\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\) |
\(\displaystyle{ \frac{d[\cot(t)]}{dt} = -\csc^2(t) }\) | |
\(\displaystyle{ \frac{d[\sec(t)]}{dt} = \sec(t)\tan(t) }\) |
\(\displaystyle{ \frac{d[\csc(t)]}{dt} = -\csc(t)\cot(t) }\) |
Inverse Trig Derivatives
\(\displaystyle{ \frac{d[\arcsin(t)]}{dt} = \frac{1}{\sqrt{1-t^2}} }\) |
\(\displaystyle{ \frac{d[\arccos(t)]}{dt} = -\frac{1}{\sqrt{1-t^2}} }\) | |
\(\displaystyle{ \frac{d[\arctan(t)]}{dt} = \frac{1}{1+t^2} }\) |
\(\displaystyle{ \frac{d[\arccot(t)]}{dt} = -\frac{1}{1+t^2} }\) | |
\(\displaystyle{ \frac{d[\arcsec(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 -1}} }\) |
\(\displaystyle{ \frac{d[\arccsc(t)]}{dt} = -\frac{1}{\abs{t}\sqrt{t^2 -1}} }\) |
Trig Integrals
\(\int{\sin(x)~dx} = -\cos(x)+C\) |
\(\int{\cos(x)~dx} = \sin(x)+C\) | |
\(\int{\tan(x)~dx} = -\ln\abs{\cos(x)}+C\) |
\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\) | |
\(\int{\sec(x)~dx} = \) \( \ln\abs{\sec(x)+\tan(x)}+C\) |
\(\int{\csc(x)~dx} = \) \( -\ln\abs{\csc(x)+\cot(x)}+C\) |
To bookmark this page and practice problems, log in to your account or set up a free account.
Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.
| |