\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \)
\( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \)

You CAN Ace Calculus

Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

effective study techniques

This page contains the full list of vector function equations including links to the pages where they are discussed and derived. Which equation you use will depend on the data you have to work with. We start by giving the variables and their names.

Variables

parametric equations

 

\(x(t),~y(t),~z(t)\)

position vector function

 

\(\vec{r}(t) = x(t)\vhat{i} + y(t)\vhat{j} + z(t)\vhat{k}\)

vector function in terms of the arc length parameter, s

 

\(\vec{r}(s) = x(s)\vhat{i} + y(s)\vhat{j} + z(s)\vhat{k}\)

Note - When the variable s is used on this page, it refers to the arc length parameter.

Equations

velocity

 

\(\vec{v}(t) = \vec{r}'(t)\)

basic acceleration

 

\(\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t)\)

unit tangent vector

 

\(\displaystyle{ \vhat{T}(t) = \frac{\vec{r}'(t)}{ \| \vec{r}'(t) \| } }\)

 

\(\displaystyle{ \vhat{T}(t) = \frac{\vec{v}(t)}{ \| \vec{v}(t) \| } }\)

principal unit normal vector

 

\(\displaystyle{ \vhat{N}(t) = \frac{d\vhat{T}/dt}{ \| d\vhat{T}/dt \| } }\)

acceleration vector

 

\( \vec{a}(t) = a_{\vhat{T}}\vhat{T} + a_{\vhat{N}}\vhat{N}\)

tangential component of acceleration

 

\(a_{\vhat{T}} = \vec{a} \cdot \vhat{T} \)

 

\(\displaystyle{a_{\vhat{T}} = \frac{\vec{a} \cdot \vec{v}}{\|\vec{v}\|} }\)

 

\(a_{\vhat{T}} = \| \vec{v} \|' \)

normal component of acceleration

 

\(a_{\vhat{N}} = \vec{a} \cdot \vhat{N} \)

 

\(a_{\vhat{N}} = \|\vec{v}\| \|\vhat{T}'\|\)

 

\(\displaystyle{a_{\vhat{N}} = \frac{\|\vec{v} \times \vec{a}\|}{\|\vec{v}\|} }\)

 

\(a_{\vhat{N}} = \sqrt{\|\vec{a}\|^2 - a_{\vhat{T}}^2}\)

Real Time Web Analytics