## 17Calculus Precalculus - Matrix Determinant

This page covers how to calculate 2x2, 3x3 and higher order determinants. One major application of the determinant in precalculus and calculus involves solving a system of linear equations using Cramer's Rule. We cover Cramer's rule on a separate page.

2x2 Matrix Determinant

Given a 2x2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
The determinant of matrix A is written
$$det(A) = \abs{A} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
Notice we use single vertical bars around the name of the matrix( $$\abs{A}$$ ) and we replace the brackets with vertical bars on the matrix itself. This is an important distinction.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
is a matrix, while
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
is a determinant.

To calculate the determinant, we multiply the top left times bottom right diagonal and we subtract the other diagonal, top right times bottom left. It looks like this. It is best not to memorize the formula but to visualize the concept of multiplying the diagonal elements. Work these practice problems to help get this concept in your head.

Instructions - - Unless otherwise instructed, calculate the determinant of these matrices.

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -2 & -10 \\ 4 & -20 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -2 & -10 \\ 4 & -20 \end{bmatrix}$$.

$$80$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -2 & -10 \\ 4 & -20 \end{bmatrix}$$.

Solution

### 1886 video

video by PatrickJMT

$$80$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & -5 \\ 2 & 4 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & -5 \\ 2 & 4 \end{bmatrix}$$.

$$26$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & -5 \\ 2 & 4 \end{bmatrix}$$.

Solution

### 1889 video

video by MIP4U

$$26$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -8 & -3 \\ 9 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -8 & -3 \\ 9 & 1 \end{bmatrix}$$.

$$19$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -8 & -3 \\ 9 & 1 \end{bmatrix}$$.

Solution

### 1891 video

video by MIP4U

$$19$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 7 & 9 \\ 2 & 4 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 7 & 9 \\ 2 & 4 \end{bmatrix}$$.

$$10$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 7 & 9 \\ 2 & 4 \end{bmatrix}$$.

Solution

### 1892 video

video by MIP4U

$$10$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 1/2 & 1/5 \\ 1/3 & -2/3 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 1/2 & 1/5 \\ 1/3 & -2/3 \end{bmatrix}$$.

$$-2/5$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 1/2 & 1/5 \\ 1/3 & -2/3 \end{bmatrix}$$.

Solution

### 1890 video

video by MIP4U

$$-2/5$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & x \\ -3 & y \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & x \\ -3 & y \end{bmatrix}$$.

$$3x+4y$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 4 & x \\ -3 & y \end{bmatrix}$$.

Solution

### 1887 video

video by PatrickJMT

$$3x+4y$$

Given that the determinant of $$\begin{bmatrix} -2 & 6 \\ 3 & w \end{bmatrix}$$ is $$24$$, find $$w$$.

Problem Statement

Given that the determinant of $$\begin{bmatrix} -2 & 6 \\ 3 & w \end{bmatrix}$$ is $$24$$, find $$w$$.

$$w=-21$$

Problem Statement

Given that the determinant of $$\begin{bmatrix} -2 & 6 \\ 3 & w \end{bmatrix}$$ is $$24$$, find $$w$$.

Solution

### 1888 video

video by PatrickJMT

$$w=-21$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 5 \\ -4 & 7 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 5 \\ -4 & 7 \end{bmatrix}$$.

$$41$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 5 \\ -4 & 7 \end{bmatrix}$$.

Solution

### 2830 video

$$41$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -7 & 8 \\ 4 & -3 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -7 & 8 \\ 4 & -3 \end{bmatrix}$$.

$$-11$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} -7 & 8 \\ 4 & -3 \end{bmatrix}$$.

Solution

### 2831 video

$$-11$$

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$$.

$$17$$

Problem Statement

Unless otherwise instructed, calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$$.

Solution

This instructor writes $$15 - -2$$ in the course of calculating this determinant. Do not duplicate this notation! Writing two negative signs (or any two binary operations) next to each other is incorrect notation and could cause you to lose points. This should be written $$15 - (-2)$$.

### 2832 video

$$17$$

3x3 Matrix Determinant Using Cofactors

In order to calculate the determinate of a 3x3 matrix, we build on the same idea as the determinate of a 2x2 matrix. Before we go through the details, watch this video which contains an excellent explanation of what we discuss here. You will need to work through this concept in your head several times before it becomes clear. So watch this video first and then go through the explanation that follows.

### Thinkwell - Finding a Determinant Using Expanding by Cofactors [9min-3secs]

video by Thinkwell

If we have a 3x3 matrix that looks like this
$$\begin{bmatrix} i & j & k \\ a & b & c \\ d & e & f \end{bmatrix}$$
we calculate the determinant by breaking the matrix into 2x2 matrices and calculating the determinant of each of those. It works like this.
Start with the element in the first row and first column, in this case $$i$$. We remove the row and column that $$i$$ is in and multiply $$i$$ by the determinant of the remaining 2x2 matrix. So the first element is
$$i \cdot \begin{vmatrix} b & c \\ e & f \end{vmatrix}$$
Of course, we know how to calculate the determinant of the 2x2 matrix.

We continue this procedure by going across the top row (you can also go down the first column and your answer will be the same but we need to go across the top row for calculating cross products). The second element is
$$j \cdot \begin{vmatrix} a & c \\ d & f \end{vmatrix}$$
and the third element is
$$k \cdot \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

Notice for each element, we remove the row and column for that item in the first row to get the corresponding 2x2 matrix.

Okay, now that we have all the elements, we need to put them together to get the result. We will show the result and discuss more afterwards.
$$\begin{vmatrix} i & j & k \\ a & b & c \\ d & e & f \end{vmatrix} = i \cdot \begin{vmatrix} b & c \\ e & f \end{vmatrix} - j \cdot \begin{vmatrix} a & c \\ d & f \end{vmatrix} + k \cdot \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$
Notice that the middle element is subtracted but the first and last are added. This is important to obtaining the correct result.

Again, it is important to visualize the concept instead of memorizing equations as you learn how to do this.

Okay, here is a video with an example.

### PatrickJMT - Finding the Determinant of a 3 x 3 matrix [6min-55secs]

video by PatrickJMT

Notes
1. Calculating determinants can be done only on square matrices, i.e. matrices with the same number of rows and columns.
2. If the determinant of a matrix is zero, we say that the matrix is singular.
3. You do not have to go across the top row to form the cofactors like we did in the discussion above. However, there are rules about the sign that goes in front of each term depending on where you start. So, initially, while you are first learning this technique, we recommend that you stick with the first row or column and alternate signs, starting with a positive sign. (Of course, check with your instructor to see what they expect.)
4. For larger matrices (more than 3 rows and columns), we just repeat the procedure, remembering to alternate signs.

Okay, let's work some practice problems.

Instructions - Calculate the determinant of these matrices using cofactors.

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

$$18$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

Solution

### 1893 video

video by MIP4U

$$18$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

$$-55$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

Solution

### 1898 video

video by MIP4U

$$-55$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

$$-49$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

Solution

### 1899 video

video by MIP4U

$$-49$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 7 & 3 \\ 8 & 9 & 5 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 7 & 3 \\ 8 & 9 & 5 \end{bmatrix}$$.

$$-60$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 7 & 3 \\ 8 & 9 & 5 \end{bmatrix}$$.

Solution

### 1900 video

video by PatrickJMT

$$-60$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 4 & -4 \\ 5 & 7 & 6 \\ -8 & 1 & 9 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 4 & -4 \\ 5 & 7 & 6 \\ -8 & 1 & 9 \end{bmatrix}$$.

$$-441$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 4 & -4 \\ 5 & 7 & 6 \\ -8 & 1 & 9 \end{bmatrix}$$.

Solution

### 2833 video

$$-441$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix using cofactors $$\begin{bmatrix} 5 & 7 & -8 \\ 4 & -3 & 6 \\ 1 & 7 & -9 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix using cofactors $$\begin{bmatrix} 5 & 7 & -8 \\ 4 & -3 & 6 \\ 1 & 7 & -9 \end{bmatrix}$$.

$$-29$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix using cofactors $$\begin{bmatrix} 5 & 7 & -8 \\ 4 & -3 & 6 \\ 1 & 7 & -9 \end{bmatrix}$$.

Solution

### 2834 video

$$-29$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 5 & 3 & 7 \\ 2 & -5 & 8 \\ -6 & 4 & 9 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 5 & 3 & 7 \\ 2 & -5 & 8 \\ -6 & 4 & 9 \end{bmatrix}$$.

$$-737$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 5 & 3 & 7 \\ 2 & -5 & 8 \\ -6 & 4 & 9 \end{bmatrix}$$.

Solution

### 2835 video

$$-737$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 8 & 4 & 3 \\ -5 & 6 & -2 \\ 7 & 9 & -8 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 8 & 4 & 3 \\ -5 & 6 & -2 \\ 7 & 9 & -8 \end{bmatrix}$$.

$$-717$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 8 & 4 & 3 \\ -5 & 6 & -2 \\ 7 & 9 & -8 \end{bmatrix}$$.

Solution

### 2836 video

$$-717$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

$$-45$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

Solution

### 2837 video

$$-45$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

$$-29$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

Solution

### 2838 video

$$-29$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -1 & 3 \\ 4 & 5 & 1 \\ -6 & 3 & -2 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -1 & 3 \\ 4 & 5 & 1 \\ -6 & 3 & -2 \end{bmatrix}$$.

$$98$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -1 & 3 \\ 4 & 5 & 1 \\ -6 & 3 & -2 \end{bmatrix}$$.

Solution

### 2839 video

$$98$$

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$.

$$35$$

Problem Statement

Unless otherwise instructed, use cofactors to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$.

Solution

### 1901 video

$$35$$

3x3 Alternate Method Using Diagonals

An alternate method for calculating the determinant involve calculating across diagonals. This method is kind of a 'shortcut'. So check with your instructor to see what they expect. Even if they don't allow you to use this technique on homework and exams, you can use it to check your work.
Note - You still need to be able to use the cofactor method since cofactors are important in other areas of linear algebra. However, in calculus, either method will suffice.

### MIP4U - Evaluating Determinants [1min-2secs]

video by MIP4U

Okay, let's work some practice problems.

Instructions - Calculate the determinant of these matrices using diagonals.

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

$$-45$$

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -2 & -1 \\ -5 & 2 & 6 \end{bmatrix}$$.

Solution

### 2840 video

$$-45$$

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

$$18$$

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} -2 & 2 & -3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{bmatrix}$$.

Solution

### 2841 video

video by MIP4U

$$18$$

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

$$-29$$

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 3 \\ 5 & 2 & 4 \end{bmatrix}$$.

Solution

### 2842 video

$$-29$$

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

$$49$$

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 6 & 8 \\ 0 & -2 & 1 \end{bmatrix}$$.

Solution

### 2843 video

$$49$$

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

$$-55$$

Problem Statement

Unless otherwise instructed, use diagonals to calculate the determinant of the matrix $$\begin{bmatrix} 3 & 1 & 2 \\ -1 & -2 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$.

Solution

### 2844 video

$$-55$$

Determinant Properties That Simplify Your Calculations

Here are a few properties of determinants that you can use to help simplify your calculations.

1. Column Factor - - If you have a column that contains a common factor, you can pull that common factor out before calculating the determinant. For example,
$$\begin{vmatrix} 2a & b \\ 2c & d \end{vmatrix} = 2 \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
Notice that we are saying that the determinants are equal, not the matrices themselves.

Higher Order Determinants

Determinants of larger matrices use the same techniques, i.e. cofactors and diagonals, for calculations. However, as you probably experienced with 3x3 matrices, the calculations can get messy and it is easy to make mistakes. So most of the time you will want to use a computer program to calculate matrices of higher order.

### matrix determinants 17calculus youtube playlist

Really UNDERSTAND Precalculus

### Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

### Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem. The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

How to Develop a Brilliant Memory Week by Week: 50 Proven Ways to Enhance Your Memory Skills Under Armour Clothing - Just Launched at eBags.com! Try AmazonFresh Free Trial When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.