\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \) \( \newcommand{\cm}{\mathrm{cm} } \) \( \newcommand{\sec}{ \, \mathrm{sec} \, } \) \( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \) \( \newcommand{\arccot}{ \, \mathrm{arccot} \, } \) \( \newcommand{\arcsec}{ \, \mathrm{arcsec} \, } \) \( \newcommand{\arccsc}{ \, \mathrm{arccsc} \, } \) \( \newcommand{\sech}{ \, \mathrm{sech} \, } \) \( \newcommand{\csch}{ \, \mathrm{csch} \, } \) \( \newcommand{\arcsinh}{ \, \mathrm{arcsinh} \, } \) \( \newcommand{\arccosh}{ \, \mathrm{arccosh} \, } \) \( \newcommand{\arctanh}{ \, \mathrm{arctanh} \, } \) \( \newcommand{\arccoth}{ \, \mathrm{arccoth} \, } \) \( \newcommand{\arcsech}{ \, \mathrm{arcsech} \, } \) \( \newcommand{\arccsch}{ \, \mathrm{arccsch} \, } \)

17Calculus Precalculus - Asymptotes of Rational Functions

Algebra

Polynomials

Functions

Rational Functions

Graphing

Matrices

Systems

Trigonometry

Complex Numbers

Applications

Practice

Practice Problems

Practice Exams

Tools

Articles

Algebra

Functions

Functions

Polynomials

Rational Functions

Graphing

Matrices & Systems

Matrices

Systems

Trigonometry & Complex Numbers

Trigonometry

Complex Numbers

Applications

SV Calculus

MV Calculus

Practice

Practice Problems

Practice Exams

Tools

Articles

Vertical, Horizontal and Slant Asymptotes of Rational Functions

Let's think about straight lines for a minute. As you know, most straight lines can be described by the equation \(y = mx + b\). Vertical lines are the exception and we write them as \(x = a\), where \(a\) is a constant.

The three types of asymptotes we talk about on this page cover all possibilities of straight lines. Vertical asymptotes are vertical lines. Horizontal asymptotes are lines with slope zero written as \(y = b\). Slant asymptotes are all other lines, \(y = mx + b\).

We can extract these equations of lines from rational functions. That is what we discuss on this page.

Vertical Asymptotes

As outlined on the basics of rational functions page, vertical asymptotes occur in rational functions at x-values where the denominator is zero AND the numerator is NOT zero. This implies that even though we have zero in the denominator of the rational function and, therefore, the x-value is not in the domain, we still need to look at the numerator at that x-value. If the numerator is not zero then we have a vertical asymptote at that x-value. (If the numerator IS zero, then there is a hole there. We discuss that on the basics of rational functions page.) Here is a graph and it's corresponding equation showing an example of a vertical asymptote. This graph has an asymptote at \(x = 3\).

\(\displaystyle{ f(x)=\frac{1}{x-3} }\)
Vertical Asymptote at \(x = 3 \)

In the case of a vertical asymptote, it doesn't matter if the graph goes off to positive or negative infinity. The x-value where the denominator is zero is called an asymptote in both cases. Also notice in this graph that one side goes off to positive infinity, the side goes off to negative infinity. Sometimes both sides go off in the same direction, positive or negative. For our discussion, the direction and whether or not they are the same does not matter. (You get to consider thoses cases in calculus.) In all cases, they are just called vertical asymptotes.

Horizontal and Slant Asymptotes

Horizontal and slant asymptotes cover the other two cases of \(y = mx + b\). In these cases, we look at what happens to the y-value as x gets very large or very small.
Before we get too far into this discussion, make sure you remember how to do long division of polynomials (covered on a separate page). It will also help you to review synthetic division, since it is faster than long division. Synthetic division works in fewer cases but, when can be used, it will save time.

These asymptotes occur as x goes to positive infinity or negative infinity, i.e. as x gets very small or very large. To determine these asymptotes, we follow these steps.

1. Use long division or synthetic division to get a polynomial and rational function where the order of the numerator is less than the order of the denominator.

2. The asymptote is the polynomial that is not part of the remaining rational function.

Before we go on, let's watch a couple of videos discussing horizontal asymptotes. Many teachers teach these concepts but without giving you the full context that horizontal asymptotes are just one of several types of these asymptotes. So keep that in mind as you watch these videos. She shows some great examples here too.

Krista King Math - Horizontal Asymptotes - Basic Overview [4min-42secs]

video by Krista King Math

Krista King Math - Horizontal Asymptotes - Further Detail [11min-4secs]

video by Krista King Math

A couple of quick examples will help. In these examples, we have already separated the rational function using long division. So the remaining part that is still a rational function has a smaller order numerator than denominator.

Example 1 - \(\displaystyle{f(x)=1+\frac{1}{x}}\)

Example 1 - - What is the asymptote of \(\displaystyle{f(x)=1+\frac{1}{x}}\)?
As x gets larger and larger, \(1/x\) gets smaller and smaller and eventually will become zero. This leaves only \(y=1\) for very large x. The same argument holds as x moves in the negative direction. So \(y=1\) is the asymptote, a horizontal asymptote in fact.

Example 2 - \(\displaystyle{f(x)=x+3+\frac{1}{x}}\)

Example 2 - - What is the asymptote of \(\displaystyle{f(x)=x+3+\frac{1}{x}}\)?
Using the same logic as in example 1, the asymptote is \(y=x+3\), in this case a slant asymptote.

Similar results hold for other types of problems. The key is to use long division to get the form we need.

Okay, time for the practice problems.

Practice

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{1}{x} }\).

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{1}{x} }\).

Solution

2950 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{7}{x-3} }\).

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{7}{x-3} }\).

Solution

2951 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5}{x+1} + 3 }\).

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5}{x+1} + 3 }\).

Solution

2952 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{8x-6}{x^2+3x} }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{8x-6}{x^2+3x} }\). You do not need to sketch a graph.

Solution

2953 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{8x-6}{x^2+3x} - 9 }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{8x-6}{x^2+3x} - 9 }\). You do not need to sketch a graph.

Solution

2954 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{2x-3}{x+4} }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{2x-3}{x+4} }\). You do not need to sketch a graph.

Solution

2955 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{12x-6}{3x+4} + 2 }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{12x-6}{3x+4} + 2 }\). You do not need to sketch a graph.

Solution

2956 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5-8x^2}{2x^2+5} - 5 }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5-8x^2}{2x^2+5} - 5 }\). You do not need to sketch a graph.

Solution

2957 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{x^2+5x+6}{x+3} }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{x^2+5x+6}{x+3} }\). You do not need to sketch a graph.

Solution

2958 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{2x^3-8x+16}{x^2+4} }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{2x^3-8x+16}{x^2+4} }\). You do not need to sketch a graph.

Solution

2959 video

close solution

Log in to rate this practice problem and to see it's current rating.

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5x^4-6x+2}{7x-3} }\). You do not need to sketch a graph.

Problem Statement

Unless otherwise instructed, calculate all horizontal and slant asymptotes for the function \(\displaystyle{ f(x) = \frac{5x^4-6x+2}{7x-3} }\). You do not need to sketch a graph.

Solution

He is correct when he says that a slant asymptote occurs only when the difference between the highest powers is exactly one and the higher power is in the numerator. What he doesn't say is that there is still an asymptote but it is neither horizontal or a straight line. In this case the asymptote will get a cubic function. Use a plotting program to see the graph. It is quite interesting and then see if you can get the equation of the asymptote from the equation. You have all the tools necessary to understand how to do it.

2960 video

close solution

Log in to rate this practice problem and to see it's current rating.

Find the slant asymptote of \(\displaystyle{f(x)=\frac{x^2+x-1}{x-1}}\).

Problem Statement

Find the slant asymptote of \(\displaystyle{f(x)=\frac{x^2+x-1}{x-1}}\).

Solution

1685 video

video by Krista King Math

close solution

Log in to rate this practice problem and to see it's current rating.

Find the zeroes and vertical asymptotes of the function \(\displaystyle{f(x)=\frac{6x^2+7x+2}{4x-4}}\).

Problem Statement

Find the zeroes and vertical asymptotes of the function \(\displaystyle{f(x)=\frac{6x^2+7x+2}{4x-4}}\).

Hint

Remember, a zero is where the numerator is zero but the denominator is NOT zero.

Problem Statement

Find the zeroes and vertical asymptotes of the function \(\displaystyle{f(x)=\frac{6x^2+7x+2}{4x-4}}\).

Final Answer

zeroes: \(x=-2/3\) and \(x=-1/2\)
VA: \(x=1\)

Problem Statement

Find the zeroes and vertical asymptotes of the function \(\displaystyle{f(x)=\frac{6x^2+7x+2}{4x-4}}\).

Hint

Remember, a zero is where the numerator is zero but the denominator is NOT zero.

Solution

2041 video

video by PatrickJMT

Final Answer

zeroes: \(x=-2/3\) and \(x=-1/2\)
VA: \(x=1\)

close solution

Log in to rate this practice problem and to see it's current rating.

Find the slant asymptote of \(\displaystyle{f(x)=\frac{x^3}{x^2-1}}\).

Problem Statement

Find the slant asymptote of \(\displaystyle{f(x)=\frac{x^3}{x^2-1}}\).

Solution

1666 video

video by Krista King Math

close solution

Log in to rate this practice problem and to see it's current rating.

Find all the asymptotes of \(\displaystyle{f(x)=\frac{5-x^2}{x+3}}\).

Problem Statement

Find all the asymptotes of \(\displaystyle{f(x)=\frac{5-x^2}{x+3}}\).

Solution

1671 video

video by PatrickJMT

close solution

Log in to rate this practice problem and to see it's current rating.

Find the asymptotes of \(\displaystyle{f(x)=\frac{x^2+4x+7}{x-1}}\).

Problem Statement

Find the asymptotes of \(\displaystyle{f(x)=\frac{x^2+4x+7}{x-1}}\).

Solution

1673 video

video by PatrickJMT

close solution

Log in to rate this practice problem and to see it's current rating.

Determine the intercepts and asymptotes of \(\displaystyle{f(x)=\frac{2x^2-9x-5}{2x^2+5x-3}}\).

Problem Statement

Determine the intercepts and asymptotes of \(\displaystyle{f(x)=\frac{2x^2-9x-5}{2x^2+5x-3}}\).

Solution

1674 video

video by MIP4U

close solution

Log in to rate this practice problem and to see it's current rating.

Determine the intercepts, asymptotes and holes of \(\displaystyle{f(x)=\frac{x^2-x-12}{2x^2-4x-16}}\).

Problem Statement

Determine the intercepts, asymptotes and holes of \(\displaystyle{f(x)=\frac{x^2-x-12}{2x^2-4x-16}}\).

Solution

1677 video

video by MIP4U

close solution

Log in to rate this practice problem and to see it's current rating.

Find the domain, asymptotes and holes of \(\displaystyle{f(x)=\frac{x+2}{x^2+5x+6}}\).

Problem Statement

Find the domain, asymptotes and holes of \(\displaystyle{f(x)=\frac{x+2}{x^2+5x+6}}\).

Solution

1682 video

video by Dr Phil Clark

close solution

Log in to rate this practice problem and to see it's current rating.

Find the asymptotes and zeroes of \(\displaystyle{R(x)=\frac{-2(x-4)(x+3)}{(x-1)(x-2)}}\).

Problem Statement

Find the asymptotes and zeroes of \(\displaystyle{R(x)=\frac{-2(x-4)(x+3)}{(x-1)(x-2)}}\).

Solution

1683 video

video by Dr Phil Clark

close solution

Log in to rate this practice problem and to see it's current rating.

Find the holes and asymptotes of \(\displaystyle{f(x)=\frac{x^2-x-2}{x^2-6x+8}}\).

Problem Statement

Find the holes and asymptotes of \(\displaystyle{f(x)=\frac{x^2-x-2}{x^2-6x+8}}\).

Solution

1684 video

video by Dr Phil Clark

close solution

Log in to rate this practice problem and to see it's current rating.

Really UNDERSTAND Precalculus

To bookmark this page and practice problems, log in to your account or set up a free account.

Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations

Precalculus

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

effective study techniques

Get great tutoring at an affordable price with Chegg. Subscribe today and get your 1st 30 minutes Free!

The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

Math Word Problems Demystified

Save 20% on Under Armour Plus Free Shipping Over $49!

Prime Student 6-month Trial

Save 20% on Under Armour Plus Free Shipping Over $49!

Shop Amazon - Sell Us Your Books - Get up to 80% Back

Do NOT follow this link or you will be banned from the site!

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.

17calculus

Copyright © 2010-2020 17Calculus, All Rights Reserved     [Privacy Policy]     [Support]     [About]

mathjax.org
Real Time Web Analytics
17Calculus
We use cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Website Privacy Policy.