Multiplying Complex Numbers
Recommended Books on Amazon (affiliate links) | ||
---|---|---|
![]() |
![]() |
![]() |
Multiplying works the same as with radicals. For example, let's multiply the same two numbers we used above, first with square root of 2 and then with complex numbers.
Example: \((1+3\sqrt{2}) (6+8\sqrt{2}) = 1(6+8\sqrt{2}) + 3\sqrt{2}(6+8\sqrt{2}) =\) \( 6+8\sqrt{2} +18\sqrt{2} +24(2) =\) \( 54+26\sqrt{2}\)
Notice we had \( (\sqrt{2})^2 = 2 \).
Now lets multiply complex numbers.
Example: \((1+3i) (6+8i) = 1(6+8i) + 3i(6+8i) =\) \( 6+8i +18i +24i^2 =\) \( 6+26i - 24 = -18+26i\)
Notice that when we got \(i^2\) and since \(i=\sqrt{-1}\), this gives us \(i^2 = (\sqrt{-1})^2 = -1\). So \(24i^2 = 24(-1)=-24\).
Before we go on, let's watch a video to give us more information.
video by Dr Chris Tisdell |
---|
Really UNDERSTAND Precalculus
Log in to rate this page and to see it's current rating.
To bookmark this page, log in to your account or set up a free account.
Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.
| |
I recently started a Patreon account to help defray the expenses associated with this site. To keep this site free, please consider supporting me. |
---|
Support 17Calculus on Patreon |
|
---|