\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \) \( \newcommand{\cm}{\mathrm{cm} } \) \( \newcommand{\sec}{ \, \mathrm{sec} \, } \) \( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \) \( \newcommand{\arccot}{ \, \mathrm{arccot} \, } \) \( \newcommand{\arcsec}{ \, \mathrm{arcsec} \, } \) \( \newcommand{\arccsc}{ \, \mathrm{arccsc} \, } \) \( \newcommand{\sech}{ \, \mathrm{sech} \, } \) \( \newcommand{\csch}{ \, \mathrm{csch} \, } \) \( \newcommand{\arcsinh}{ \, \mathrm{arcsinh} \, } \) \( \newcommand{\arccosh}{ \, \mathrm{arccosh} \, } \) \( \newcommand{\arctanh}{ \, \mathrm{arctanh} \, } \) \( \newcommand{\arccoth}{ \, \mathrm{arccoth} \, } \) \( \newcommand{\arcsech}{ \, \mathrm{arcsech} \, } \) \( \newcommand{\arccsch}{ \, \mathrm{arccsch} \, } \)

17Calculus - Partial Integrals

Coordinate Systems

Vectors

Using Vectors

Applications

Vector Functions

Partial Derivatives

Partial Integrals

Double Integrals - 2Int

Triple Integrals - 3Int

Practice

Vector Fields

Practice

Calculus 1 Practice

Calculus 2 Practice

Practice Exams

Tools

Calculus Tools

Additional Tools

Articles

Coordinate Systems

Vectors

Using Vectors

Applications

Vector Functions

Partial Derivatives

Partial Integrals

Double Integrals - 2Int

Triple Integrals - 3Int

Practice

Vector Fields

SV Calculus

MV Calculus

Practice

Calculus 1 Practice

Calculus 2 Practice

Practice Exams

Tools

Calculus Tools

Additional Tools

Articles

Partial integrals or partial integration could mean several different things. On this site, we use the term to refer to integrals with multiple variables usually involving nested integrals. These types of integrals are often called iterated integrals. Other meanings could be integration by parts or integration using partial fractions.

A partial integral is the complement of the partial derivative. The idea is that your integral has multiple variables but you integrate with respect to one at a time, while holding the other variables constant. The idea is not difficult if you have a good handle on partial derivatives. There is one additional thing you need to watch for, the form of the constant.

You remember way back in single variable calculus when you learned integration, you needed to remember to include the constant of integration. For example,
\( \int{2x~dx} = x^2 + C \)
In this example, the \(C\) is just a constant, i.e. just some real number. We use \(C\) as a placeholder, since it can have any value, \(3\), \(\pi\), \(17\), \(127\) and even \(0\).
The same idea holds for partial integrals, i.e. you need a 'constant' of integration. However, this constant is a bit different for multi-variable integration than it was for the single variable case. The 'constant' of integration here is actually a constant function of integration, i.e. it is a function of the other variables that are held constant when we integrate.

In general, it looks like this. For a function \(f(x,y)\), when we integrate this with respect to \(x\), we get

\( \int{f(x,y)~dx} = F(x,y) + g(y) \) where \(\partial F(x,y)/\partial x = f(x,y)\). Let's think about this.

If we were given a function that looks like \(F(x,y) + g(y)\) and we were told to take the partial derivative with respect to \(x\), we would get

\(\displaystyle{ \frac{\partial [F(x,y)]}{\partial x} + \frac{\partial [g(y)]}{\partial x} = f(x,y) + 0 }\)

\(\displaystyle{ \frac{\partial [g(y)]}{\partial x} = 0 }\) because \(g(y)\) has no \(x\)'s in it and, therefore, is considered a constant. And we all know that the derivative of a constant is zero.

So, other than the constant situation, integration should be pretty straightforward. Let's do an example.

Evaluate \( \int{ 2xy~dx } \)

Evaluate \( \int{ 2xy~dx } \)

Solution

Since we are integrating with respect to \(x\), \(y\) is a constant. In fact, when integrating, we can pull the \(y\) outside the integral to make things easier to see. So we have
\( \int{ 2xy~dx } = y \int{2x~dx} = y(x^2) + g(y) = x^2y + g(y) \)
Notice that instead of \(C\), we have \(g(y)\), which is a function of \(y\). (This function could also be just a constant.) The point is, it can't have any \(x\)'s in it. It can have only constants and \(y\)'s (or whatever variable(s) we hold constant during integration).

Here is a great video clip with an example. He explains the details without getting too technical.

PatrickJMT - partial integrals

video by PatrickJMT

Definite Partial Integrals

For definite integrals, we don't have worry about the constant, of course. However, we have an added tip that may help you avoid mistakes when you are tired or stressed, for example, during an exam. Let's look at an example.

Evaluate \(\displaystyle{ \int_{a}^{b}{ 2xy ~ dx } }\)

Evaluate \(\displaystyle{ \int_{a}^{b}{ 2xy ~ dx } }\)

Solution

\(\displaystyle{ \int_{a}^{b}{ 2xy ~ dx } = }\) \(\displaystyle{ 2y \int_{a}^{b}{ x~dx } = }\) \(\displaystyle{ \left[ x^2 y \right]_{x=a}^{x=b} = }\) \(\displaystyle{ (b^2-a^2)y }\)

Most of this example is self-explanatory but we want to mention one thing we did that may look unusual. Notice that after integration but before substituting the limits of integration, we wrote \(\displaystyle{ \left[ x^2 y \right]_{x=a}^{x=b} }\). It would have been technically correct if we had written \(\displaystyle{ \left[ x^2 y \right]_{a}^{b} }\). However, writing \(x=a\) and \(x=b\), we are making sure that we remember to substitute for \(x\), not \(y\). It is very easy to make a mistake here. So writing it more clearly could help prevent lost points. We highly recommend that you do it this way but, as always, check with your instructor to see what they expect.

Another twist with definite partial integrals is that the limits of integration do not have to be constants. They can be expressions like \(y+2\). This doesn't really change anything that you will do but it looks kind of strange when you first see it. Let's look at another example.

Evaluate \(\displaystyle{ \int_{0}^{x}{2x+y ~ dy} }\)

Evaluate \(\displaystyle{ \int_{0}^{x}{2x+y ~ dy} }\)

Solution

\(\displaystyle{ \int_{0}^{x}{2x+y ~ dy} = }\) \(\displaystyle{ \left[ 2xy + y^2/2 \right]_{y=0}^{y=x} = }\) \(\displaystyle{ 2x^2 + x^2/2 = 5x^2/2 }\)

A few comments are in order.
1. Notice that we used the explicit notation for \(y=0\) and \(y=x\) for the limits. We do that a lot on this site to help you follow our examples.
2. If you have an expression in one or both limits of integration, the expressions will not contain the variable of integration under any circumstance. Here is something you will never see: \(\displaystyle{ \int_{0}^{y}{2x+y ~ dy} }\). Having a limit of integration with the variable of integration in it does not make sense.
3. Notice that the result of the integration is a function of the variable that was considered a constant in the integration and the variable of integration is no where to be found. This will always be the case. In this example, \(y\) is not in the final answer and \(x\) was considered a constant of integration but in the final answer it is a variable.

We usually don't use partial integration in isolation. The beauty of integration is that we use this idea to solve double and triple integrals. Here are a few practice problems. After those, if you are comfortable describing areas in the plane, we recommend that you go straight to your next topic, double integrals on rectangular regions.

Practice

Unless otherwise instructed, evaluate these integrals using correct notation. Give your answers in exact terms, completely factored. Do not forget the function of integration.

\(\displaystyle{ \int_{1}^{2x}{ \frac{x^2}{y} ~ dy } }\)

Problem Statement

\(\displaystyle{ \int_{1}^{2x}{ \frac{x^2}{y} ~ dy } }\)

Final Answer

\( 2x^2 \)

Problem Statement

\(\displaystyle{ \int_{1}^{2x}{ \frac{x^2}{y} ~ dy } }\)

Solution

\(\begin{array}{rcl} \int_0^x{ x + 2y ~ dy } & = & \left[ xy + y^2 \right]_{y=0}^{y=x} \\ & = & [x^2 + x^2] - [0] \\ & = & 2x^2 \end{array}\)

Final Answer

\( 2x^2 \)

close solution

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ \int_{x}^{x^2}{ \frac{y}{x} ~ dy } }\)

Problem Statement

\(\displaystyle{ \int_{x}^{x^2}{ \frac{y}{x} ~ dy } }\)

Final Answer

\(\displaystyle{ \frac{x}{2}[ x^2 - 1 ] }\)

Problem Statement

\(\displaystyle{ \int_{x}^{x^2}{ \frac{y}{x} ~ dy } }\)

Solution

In this integral, \(y\) is the variable of integration, so \(x\) is a constant. Before integrating, we will pull the \(1/x\) out in front (since it is a constant). This makes the integration a bit easier to see.
\(\begin{array}{rcl} \displaystyle{ \int_{x}^{x^2}{ \frac{y}{x} ~ dy } } & = & \displaystyle{ \frac{1}{x} \int_{x}^{x^2}{ y ~ dy } } \\ & = & \displaystyle{ \frac{1}{x} \left[ \frac{y^2}{2} \right]_{y=x}^{y=x^2} } \\ & = & \displaystyle{ \frac{x^4}{2x} - \frac{x^2}{2x} } \\ & = & \displaystyle{ \frac{x^3}{2} - \frac{x}{2} } \\ & = & \displaystyle{ \frac{x}{2} [ x^2 -1 ] } \end{array}\)

Final Answer

\(\displaystyle{ \frac{x}{2}[ x^2 - 1 ] }\)

close solution

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ \int_{0}^{\cos y}{ y ~ dx } }\)

Problem Statement

\(\displaystyle{ \int_{0}^{\cos y}{ y ~ dx } }\)

Final Answer

\( y \cos y \)

Problem Statement

\(\displaystyle{ \int_{0}^{\cos y}{ y ~ dx } }\)

Solution

\( \displaystyle{ \int_{0}^{\cos y}{ y ~dx } = yx |_0^{\cos y} = y \cos y } \)

Final Answer

\( y \cos y \)

close solution

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ \int_{e^y}^{y}{ \frac{y \ln x}{x} ~ dx } }\), \( y \gt 0 \)

Problem Statement

Evaluate \(\displaystyle{ \int_{e^y}^{y}{ \frac{y \ln x}{x} ~ dx } }\), \( y \gt 0 \)

Final Answer

\(\displaystyle{ \frac{y}{2}[ (\ln y)^2 - y^2 ] }\)

Problem Statement

Evaluate \(\displaystyle{ \int_{e^y}^{y}{ \frac{y \ln x}{x} ~ dx } }\), \( y \gt 0 \)

Solution

Use integration by substitution and let \( u = \ln x \to du = (1/x)dx \to x~du = dx \)

Drop the limits of integration and evaluate the indefinite integral \(\displaystyle{ \int{ \frac{y \ln x}{x} ~ dx } }\)

\(\displaystyle{ \int{ \frac{y}{x}u ~ x~ du } = y \int{ u ~ du} = \frac{y u^2}{2} }\)

Now convert the integral back in terms of \(x\) and apply the limits of integration.

\(\displaystyle{ \left[ \frac{y}{2}(\ln x)^2 \right]_{x=e^y}^{x=y} }\)

\(\displaystyle{ \frac{y}{2}\left[ (\ln y)^2 - (\ln e^y)^2 \right] }\)

\(\displaystyle{ \frac{y}{2} [ (\ln y)^2 - y^2 ] }\)

If you converted the limits of integration in terms of \(u\), here are the steps.

Use integration by substitution and let \( u = \ln x \to du = (1/x)dx \to x~du = dx \)

For the limits of integration, we have the upper limit \(x=y \to u =\ln y \). For the lower limits \(x=e^y \to u = \ln e^y \to u = y \)

\(\displaystyle{ \int_{u=y}^{u=\ln y}{ \frac{y}{x}u ~ x~ du } = y \int_{u=y}^{u=\ln y}{ u ~ du} = \left[ \frac{y u^2}{2} \right]_{u=y}^{u=\ln y} }\)

Now apply the limits of integration.

\(\displaystyle{ \frac{y}{2} [ (\ln y)^2 - y^2 ] }\)

Final Answer

\(\displaystyle{ \frac{y}{2}[ (\ln y)^2 - y^2 ] }\)

close solution

Log in to rate this practice problem and to see it's current rating.

For \( f(x,y) = 3x^3 - 4/y^2 -x + xy + 2y\), calculate the partial derivatives \(f_x\) and \(f_y\), then integrate each using the same variable, i.e. evaluate \( \int{ f_x ~ dx } \) and \( \int{ f_y ~ dy } \)

Problem Statement

For \( f(x,y) = 3x^3 - 4/y^2 -x + xy + 2y\), calculate the partial derivatives \(f_x\) and \(f_y\), then integrate each using the same variable, i.e. evaluate \( \int{ f_x ~ dx } \) and \( \int{ f_y ~ dy } \)

Solution

3528 video

video by MIP4U

close solution

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ \int_{0}^{2y}{ 2x - 3y ~ dx } }\)

Problem Statement

\(\displaystyle{ \int_{0}^{2y}{ 2x - 3y ~ dx } }\)

Solution

3529 video

video by MIP4U

close solution

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ \int_{1}^{2x}{ \frac{x^2}{y} ~ dy } }\)

Problem Statement

\(\displaystyle{ \int_{1}^{2x}{ \frac{x^2}{y} ~ dy } }\)

Solution

3530 video

video by MIP4U

close solution

Log in to rate this practice problem and to see it's current rating.

You CAN Ace Calculus

Topics You Need To Understand For This Page

Trig Formulas

The Unit Circle

The Unit Circle [wikipedia]

Basic Trig Identities

Set 1 - basic identities

\(\displaystyle{ \tan(t) = \frac{\sin(t)}{\cos(t)} }\)

\(\displaystyle{ \cot(t) = \frac{\cos(t)}{\sin(t)} }\)

\(\displaystyle{ \sec(t) = \frac{1}{\cos(t)} }\)

\(\displaystyle{ \csc(t) = \frac{1}{\sin(t)} }\)

Set 2 - squared identities

\( \sin^2t + \cos^2t = 1\)

\( 1 + \tan^2t = \sec^2t\)

\( 1 + \cot^2t = \csc^2t\)

Set 3 - double-angle formulas

\( \sin(2t) = 2\sin(t)\cos(t)\)

\(\displaystyle{ \cos(2t) = \cos^2(t) - \sin^2(t) }\)

Set 4 - half-angle formulas

\(\displaystyle{ \sin^2(t) = \frac{1-\cos(2t)}{2} }\)

\(\displaystyle{ \cos^2(t) = \frac{1+\cos(2t)}{2} }\)

Trig Derivatives

\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\)

 

\(\displaystyle{ \frac{d[\cos(t)]}{dt} = -\sin(t) }\)

\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\)

 

\(\displaystyle{ \frac{d[\cot(t)]}{dt} = -\csc^2(t) }\)

\(\displaystyle{ \frac{d[\sec(t)]}{dt} = \sec(t)\tan(t) }\)

 

\(\displaystyle{ \frac{d[\csc(t)]}{dt} = -\csc(t)\cot(t) }\)

Inverse Trig Derivatives

\(\displaystyle{ \frac{d[\arcsin(t)]}{dt} = \frac{1}{\sqrt{1-t^2}} }\)

 

\(\displaystyle{ \frac{d[\arccos(t)]}{dt} = -\frac{1}{\sqrt{1-t^2}} }\)

\(\displaystyle{ \frac{d[\arctan(t)]}{dt} = \frac{1}{1+t^2} }\)

 

\(\displaystyle{ \frac{d[\arccot(t)]}{dt} = -\frac{1}{1+t^2} }\)

\(\displaystyle{ \frac{d[\arcsec(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 -1}} }\)

 

\(\displaystyle{ \frac{d[\arccsc(t)]}{dt} = -\frac{1}{\abs{t}\sqrt{t^2 -1}} }\)

Trig Integrals

\(\int{\sin(x)~dx} = -\cos(x)+C\)

 

\(\int{\cos(x)~dx} = \sin(x)+C\)

\(\int{\tan(x)~dx} = -\ln\abs{\cos(x)}+C\)

 

\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\)

\(\int{\sec(x)~dx} = \) \( \ln\abs{\sec(x)+\tan(x)}+C\)

 

\(\int{\csc(x)~dx} = \) \( -\ln\abs{\csc(x)+\cot(x)}+C\)

To bookmark this page and practice problems, log in to your account or set up a free account.

Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations

Precalculus

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

more calculus help

The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

Basic Idea

Definite Partial Integrals

How to Ace Calculus: The Streetwise Guide

Shop eBags.com, the leading online retailer of luggage, handbags, backpacks, accessories, and more!

Prime Student 6-month Trial

Shop eBags.com, the leading online retailer of luggage, handbags, backpacks, accessories, and more!

Prime Student 6-month Trial

Practice Instructions

Unless otherwise instructed, evaluate these integrals using correct notation. Give your answers in exact terms, completely factored. Do not forget the function of integration.

Do NOT follow this link or you will be banned from the site!

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.

17calculus

Copyright © 2010-2020 17Calculus, All Rights Reserved     [Privacy Policy]     [Support]     [About]

mathjax.org
Real Time Web Analytics
17Calculus
We use cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Website Privacy Policy.