## 17Calculus - Inverse Laplace Transforms

##### 17Calculus

Since we use an integral to calculate the Laplace Transform, you might expect to use derivatives to go the other direction. Counterintuitively, this is not the case. Calculating the inverse Laplace Transform involves fewer actual computations. Most of the time, you will use formulas and tables that were derived from calculating the Laplace Transform.

Notation

The notation we used for the Laplace Transform, looked like this. $F(s) = \mathcal{L}\{ f(t) \}$ Intuitively, the notation for the Inverse Laplace Transform is written in a logical manner. $f(t) = \mathcal{L}^{-1} \{ F(s) \}$

Rules

Since the Laplace Transform uses integration, which is a linear operation, so too is the inverse Laplace Transform. This means that $\mathcal{L}^{-1} \{ F(s) + G(s) \} = \mathcal{L}^{-1} \{ F(s) \} + \mathcal{L}^{-1} \{ G(s) \}$ For the same reason, using the constant $$a$$, this equation also holds. $\mathcal{L}^{-1} \{ aF(s) \} = a \mathcal{L}^{-1} \{ F(s) \}$

Calculating the Inverse Laplace Transform

To actually calculate the inverse Laplace Transform, we use tables. However, you will need to make sure your partial fraction expansion skills are sharp.

Okay, here is the table you need to use for calculating inverse Laplace Transforms. The practice problems column contain links to practice problems using this table.

### Laplace Transforms Table

Laplace Transforms

$$f(t)$$

$$\displaystyle{ F(s) }$$

Basic Functions

$$t^n, ~ n = 1, 2, 3, \ldots$$

$$\displaystyle{ \frac{n!}{s^{n+1}} }$$

$$e^{at}$$

$$\displaystyle{ \frac{1}{s-a} }$$

$$\sin(\alpha t)$$

$$\displaystyle{ \frac{\alpha}{s^2 + \alpha^2} }$$

$$\cos(at)$$

$$\displaystyle{ \frac{s}{s^2 + a^2} }$$

$$\sinh(at)$$

$$\displaystyle{ \frac{a}{s^2 - a^2} }$$

$$\cosh(at)$$

$$\displaystyle{ \frac{s}{s^2 - a^2} }$$

Special Functions

$$\delta(t)$$ unit impulse

$$1$$

$$\delta(t-\tau)$$ shifted unit impulse

$$e^{-\tau s}$$

$$u(t)$$ unit step

$$\displaystyle{ \frac{1}{s} }$$

$$u(t-\tau)$$ shifted unit step

$$\displaystyle{ \frac{1}{s} e^{-\tau s} }$$

Combined Functions

$$e^{at}\sin(\alpha t)$$

$$\displaystyle{ \frac{\alpha}{(s-a)^2 + \alpha^2} }$$

$$f(t)u(t-a)$$

$$\displaystyle{ e^{-sa} \mathcal{L}\{ f(t+a) \} }$$

$$t^n e^{at}, ~ n = 1, 2, 3, \ldots$$

$$\displaystyle{ \frac{n!}{(s-a)^{n+1}} \} }$$

Derivatives and Integrals

$$f'(t)$$

$$sF(s) - f(0)$$

$$f''(t)$$

$$s^2F(s) - sf(0) - f'(0)$$

$$\displaystyle{ f^{(n)}(t) }$$

$$\displaystyle{ s^nF(s) - s^{n-1}f(0) - }$$ $$\displaystyle{ s^{n-2}f'(0) - . . . - f^{(n-1)}(0) }$$

$$\int_0^t{ f(v)~dv }$$

$$\displaystyle{ \frac{F(s)}{s} }$$

Okay, so why do we need Laplace Transforms? Why are they useful? We use them to solve differential equations that cannot be solved otherwise, sometimes involving some special functions. These special functions also have a purpose. Some that you will run across are the unit step function, unit impulse function and the square wave.

Practice

Unless otherwise instructed, calculate the inverse Laplace transform $$f(t) = \mathcal{L}^{-1} \{ F(s) \}$$ using a table. Give your answer in exact, completely factored form.

Basic

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\} }$$

$$t^3/6$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\} }$$

Solution

### blackpenredpen - 3610 video solution

video by blackpenredpen

$$t^3/6$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{6s+3} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{6s+3} \right\} }$$

$$\displaystyle{ \frac{e^{-t/2}}{6} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{6s+3} \right\} }$$

Solution

### blackpenredpen - 3624 video solution

video by blackpenredpen

$$\displaystyle{ \frac{e^{-t/2}}{6} }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+1}{s^2+2} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+1}{s^2+2} \right\} }$$

$$\displaystyle{ \cos(t\sqrt{2}) + \frac{\sin(t\sqrt{2})}{\sqrt{2}} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+1}{s^2+2} \right\} }$$

Solution

### blackpenredpen - 3625 video solution

video by blackpenredpen

$$\displaystyle{ \cos(t\sqrt{2}) + \frac{\sin(t\sqrt{2})}{\sqrt{2}} }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^2+2s} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^2+2s} \right\} }$$

$$\displaystyle{ \frac{1}{2} ( 1-e^{-2t} ) }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^2+2s} \right\} }$$

Solution

### blackpenredpen - 3626 video solution

video by blackpenredpen

$$\displaystyle{ \frac{1}{2} ( 1-e^{-2t} ) }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{(s+2)^2} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{(s+2)^2} \right\} }$$

$$e^{-2t} - 2te^{-2t}$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{(s+2)^2} \right\} }$$

Solution

### blackpenredpen - 3627 video solution

video by blackpenredpen

$$e^{-2t} - 2te^{-2t}$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{se^{-\pi s/2}}{s^2+1} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{se^{-\pi s/2}}{s^2+1} \right\} }$$

$$\cos(t-\pi/2)u(t-\pi/2)$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{se^{-\pi s/2}}{s^2+1} \right\} }$$

Solution

### blackpenredpen - 3628 video solution

video by blackpenredpen

$$\cos(t-\pi/2)u(t-\pi/2)$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{s^2+2s+2} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{s^2+2s+2} \right\} }$$

$$e^{-t}( \cos(t) - \sin(t) )$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s}{s^2+2s+2} \right\} }$$

Solution

### blackpenredpen - 3629 video solution

video by blackpenredpen

$$e^{-t}( \cos(t) - \sin(t) )$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{(s+2)^5} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{(s+2)^5} \right\} }$$

$$\displaystyle{ \frac{t^4 e^{-2t}}{24} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{(s+2)^5} \right\} }$$

Solution

### blackpenredpen - 3631 video solution

video by blackpenredpen

$$\displaystyle{ \frac{t^4 e^{-2t}}{24} }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+8}{s^2+4s+13} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+8}{s^2+4s+13} \right\} }$$

$$e^{-2t}( \cos(3t) + 2\sin(3t) )$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s+8}{s^2+4s+13} \right\} }$$

Solution

### blackpenredpen - 3633 video solution

video by blackpenredpen

$$e^{-2t}( \cos(3t) + 2\sin(3t) )$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4+5s^2+4} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4+5s^2+4} \right\} }$$

$$\displaystyle{ \frac{1}{6} (2\sin(t) - \sin(2t)) }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4+5s^2+4} \right\} }$$

Solution

### blackpenredpen - 3634 video solution

video by blackpenredpen

$$\displaystyle{ \frac{1}{6} (2\sin(t) - \sin(2t)) }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4 e^{10s}} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4 e^{10s}} \right\} }$$

$$\displaystyle{ \frac{(t-10)^3}{6} u(t-10) }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4 e^{10s}} \right\} }$$

Solution

### blackpenredpen - 3635 video solution

video by blackpenredpen

$$\displaystyle{ \frac{(t-10)^3}{6} u(t-10) }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \ln \left[ \frac{s^2+9}{s^2+1} \right] \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \ln \left[ \frac{s^2+9}{s^2+1} \right] \right\} }$$

$$\displaystyle{ \frac{2}{t}( \cos(t) -\cos(3t)) }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \ln \left[ \frac{s^2+9}{s^2+1} \right] \right\} }$$

Solution

### blackpenredpen - 3637 video solution

video by blackpenredpen

$$\displaystyle{ \frac{2}{t}( \cos(t) -\cos(3t)) }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4-16} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4-16} \right\} }$$

$$\frac{1}{32}( e^{2t} - e^{-2t} -2\sin(2t) )$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4-16} \right\} }$$

Solution

### blackpenredpen - 3638 video solution

video by blackpenredpen

$$\frac{1}{32}( e^{2t} - e^{-2t} -2\sin(2t) )$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s^3}{(s^4-16)^2} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s^3}{(s^4-16)^2} \right\} }$$

Hint

Use the result from the previous problem to solve this one.

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{s^3}{(s^4-16)^2} \right\} }$$

Hint

Use the result from the previous problem to solve this one.

Solution

### blackpenredpen - 3639 video solution

video by blackpenredpen

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ F(s) = \frac{1}{s-3} - \frac{16}{s^2+9} }$$

Problem Statement

For $$\displaystyle{ F(s) = \frac{1}{s-3} - \frac{16}{s^2+9} }$$, find the inverse Laplace transform $$f(t) = \mathcal{L}^{-1} \{ F(s) \}$$.

Solution

### PatrickJMT - 651 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ F(s) = \frac{s+3}{s^2+4s+13} }$$

Problem Statement

For $$\displaystyle{ F(s) = \frac{s+3}{s^2+4s+13} }$$, find the inverse Laplace transform $$f(t) = \mathcal{L}^{-1} \{ F(s) \}$$.

Solution

### Krista King Math - 654 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

Intermediate

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^3 (s^2+1)} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^3 (s^2+1)} \right\} }$$

$$\cos(t) + t^2/2 - 1$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^3 (s^2+1)} \right\} }$$

Solution

### blackpenredpen - 3630 video solution

video by blackpenredpen

$$\cos(t) + t^2/2 - 1$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \arctan(1/s) \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \arctan(1/s) \right\} }$$

$$\displaystyle{ \frac{\sin(t)}{t} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \arctan(1/s) \right\} }$$

Solution

### blackpenredpen - 3636 video solution

video by blackpenredpen

$$\displaystyle{ \frac{\sin(t)}{t} }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{\sqrt{s}} + \frac{1}{\sqrt{e^s}} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{\sqrt{s}} + \frac{1}{\sqrt{e^s}} \right\} }$$

$$\displaystyle{ \frac{1}{\sqrt{\pi t}} + \delta(t-1/2) }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{\sqrt{s}} + \frac{1}{\sqrt{e^s}} \right\} }$$

Solution

### blackpenredpen - 3632 video solution

video by blackpenredpen

$$\displaystyle{ \frac{1}{\sqrt{\pi t}} + \delta(t-1/2) }$$

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4+4s^2+4} \right\} }$$

Problem Statement

Evaluate $$\displaystyle{ \mathcal{L}^{-1} \left\{ \frac{1}{s^4+4s^2+4} \right\} }$$

Solution

### blackpenredpen - 3640 video solution

video by blackpenredpen

Log in to rate this practice problem and to see it's current rating.

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.