## 17Calculus Integrals - Tangent Reduction Formula

### Integrals

Improper Integrals

Trig Integrals

Length-Area-Volume

Applications - Tools

### Practice

Calculus 1 Practice

Calculus 2 Practice

Practice Exams

Calculus Tools

### Articles

This page covers the derivation and use of the tangent reduction formula for integration.

Tangent Reduction Formula (n is an integer and $$n>1$$)

$$\displaystyle{\int{\tan^n x~dx}= \frac{\tan^{n-1}x}{n-1} - \int{\tan^{n-2}x~dx}}$$

When you have an integral with only tangent where the power is greater than one, you can use the tangent reduction formula, repeatedly if necessary, to reduce the power until you end up with either $$\tan x$$ or $$\tan^2 x$$. Let's derive the formula and then work some practice problems.

Deriving The Tangent Reduction Formula

$$\displaystyle{ \int{\tan^nx~dx} = \frac{\tan^{n-1}x}{n-1} - \int{\tan^{n-2}x~dx} }$$ Separate out a $$\tan^2x$$. $$\int{\tan^nx~dx} = \int{\tan^{n-2}x \tan^2x~dx}$$ Use the identity $$\sec^2x=1+\tan^2x$$ to replace the $$\tan^2x$$ with $$\sec^2x-1$$. $$\int{\tan^nx~dx} = \int{\tan^{n-2}x~(\sec^2x-1)~dx}$$ Distribute the $$\tan^{n-2}x$$ term and separate into two integrals. $$\int{\tan^nx~dx} =$$ $$\int{\tan^{n-2}x \sec^2x~dx}$$ $$-$$ $$\int{\tan^{n-2}x~dx}$$ Use integration by substitution on the first integral on the right side of the equal sign. $$u=\tan x \to du=\sec^2x~dx$$ $$\int{\tan^nx~dx} =$$ $$\int{u^{n-2}~du}$$ $$-$$ $$\int{\tan^{n-2}x~dx}$$ Integrate the term containing u and convert back to x's. $$\displaystyle{ \int{\tan^nx~dx} = }$$ $$\displaystyle{ \frac{u^{n-1}}{n-1} - \int{\tan^{n-2}x~dx} }$$ This last equation is the tangent reduction formula.

Now let's work some practice problems.

Practice

Unless otherwise instructed, evaluate these integrals directly, then check your answer using the reduction formula.

$$\displaystyle{ \int{ \tan^3x ~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \tan^3x ~dx } }$$ using the techniques on the tangent-secant trig integration page. Then check your answer using the tangent reduction formula.

Solution

### 2574 video

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \tan^4x ~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \tan^4x ~dx } }$$ using the techniques on the tangent-secant trig integration page. Then check your answer using the tangent reduction formula.

Solution

### 2573 video

Log in to rate this practice problem and to see it's current rating.

Evaluate $$\int{ \tan^5x ~dx }$$ using the tangent reduction formula.

Problem Statement

Evaluate $$\int{ \tan^5x ~dx }$$ using the tangent reduction formula.

Solution

Here are two videos, by two different instructors, solving this problem.

### 116 video

video by PatrickJMT

### 116 video

Log in to rate this practice problem and to see it's current rating.

### trig integration 17calculus youtube playlist

You CAN Ace Calculus

 basic trig integration integration by substitution integration by parts

### Trig Identities and Formulas

basic trig identities

$$\sin^2\theta+\cos^2\theta=1$$   |   $$1+\tan^2\theta=\sec^2\theta$$

$$\displaystyle{\tan\theta=\frac{\sin\theta}{\cos\theta}}$$   |   $$\displaystyle{\cot\theta=\frac{\cos\theta}{\sin\theta}}$$

$$\displaystyle{\sec\theta=\frac{1}{\cos\theta}}$$   |   $$\displaystyle{\csc\theta=\frac{1}{\sin\theta}}$$

power reduction (half-angle) formulae

$$\displaystyle{\sin^2\theta=\frac{1-\cos(2\theta)}{2}}$$   |   $$\displaystyle{\cos^2\theta=\frac{1+\cos(2\theta)}{2}}$$

double angle formulae

$$\sin(2\theta)=2\sin\theta\cos\theta$$   |   $$\cos(2\theta)=\cos^2\theta-\sin^2\theta$$

list of trigonometric identities - wikipedia

trig sheets - pauls online notes

17calculus trig formulas - full list

### Trig Derivatives and Integrals

basic trig derivatives

$$\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }$$

$$\displaystyle{ \frac{d[\cos(t)]}{dt} = -\sin(t) }$$

$$\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }$$

$$\displaystyle{ \frac{d[\cot(t)]}{dt} = -\csc^2(t) }$$

$$\displaystyle{ \frac{d[\sec(t)]}{dt} = }$$ $$\sec(t)\tan(t)$$

$$\displaystyle{ \frac{d[\csc(t)]}{dt} = }$$ $$-\csc(t)\cot(t)$$

basic trig integrals

$$\int{\sin(x)~dx} = -\cos(x)+C$$

$$\int{\cos(x)~dx} = \sin(x)+C$$

$$\int{\tan(x)~dx} = -\ln\abs{\cos(x)}+C$$

$$\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C$$

$$\int{\sec(x)~dx} = \ln\abs{\sec(x)+\tan(x)}+C$$

$$\int{\csc(x)~dx} = -\ln\abs{\csc(x)+\cot(x)}+C$$

reduction formulae

Reduction Formulas (n is a positive integer)

$$\displaystyle{\int{\sin^n x~dx} = -\frac{\sin^{n-1}x\cos x}{n} + }$$ $$\displaystyle{ \frac{n-1}{n}\int{\sin^{n-2}x~dx} }$$

$$\displaystyle{\int{\cos^n x~dx} = \frac{\cos^{n-1}x\sin x}{n} + }$$ $$\displaystyle{ \frac{n-1}{n}\int{\cos^{n-2}x~dx}}$$

Reduction Formulas (n is an integer and $$n>1$$)

$$\displaystyle{\int{\tan^n x~dx}= \frac{\tan^{n-1}x}{n-1} - \int{\tan^{n-2}x~dx}}$$

$$\displaystyle{\int{\sec^n x~dx} = \frac{\sec^{n-2}x\tan x}{n-1} + }$$ $$\displaystyle{ \frac{n-2}{n-1}\int{\sec^{n-2}x~dx}}$$

17calculus trig formulas - full list

related topics on other pages

basic trig integration

secant-tangent trig integration

Wikipedia - List of Trig Identities

### Trig Formulas

The Unit Circle

The Unit Circle [wikipedia]

Basic Trig Identities

Set 1 - basic identities

$$\displaystyle{ \tan(t) = \frac{\sin(t)}{\cos(t)} }$$

$$\displaystyle{ \cot(t) = \frac{\cos(t)}{\sin(t)} }$$

$$\displaystyle{ \sec(t) = \frac{1}{\cos(t)} }$$

$$\displaystyle{ \csc(t) = \frac{1}{\sin(t)} }$$

Set 2 - squared identities

$$\sin^2t + \cos^2t = 1$$

$$1 + \tan^2t = \sec^2t$$

$$1 + \cot^2t = \csc^2t$$

Set 3 - double-angle formulas

$$\sin(2t) = 2\sin(t)\cos(t)$$

$$\displaystyle{ \cos(2t) = \cos^2(t) - \sin^2(t) }$$

Set 4 - half-angle formulas

$$\displaystyle{ \sin^2(t) = \frac{1-\cos(2t)}{2} }$$

$$\displaystyle{ \cos^2(t) = \frac{1+\cos(2t)}{2} }$$

Trig Derivatives

 $$\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }$$ $$\displaystyle{ \frac{d[\cos(t)]}{dt} = -\sin(t) }$$ $$\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }$$ $$\displaystyle{ \frac{d[\cot(t)]}{dt} = -\csc^2(t) }$$ $$\displaystyle{ \frac{d[\sec(t)]}{dt} = \sec(t)\tan(t) }$$ $$\displaystyle{ \frac{d[\csc(t)]}{dt} = -\csc(t)\cot(t) }$$

Inverse Trig Derivatives

 $$\displaystyle{ \frac{d[\arcsin(t)]}{dt} = \frac{1}{\sqrt{1-t^2}} }$$ $$\displaystyle{ \frac{d[\arccos(t)]}{dt} = -\frac{1}{\sqrt{1-t^2}} }$$ $$\displaystyle{ \frac{d[\arctan(t)]}{dt} = \frac{1}{1+t^2} }$$ $$\displaystyle{ \frac{d[\arccot(t)]}{dt} = -\frac{1}{1+t^2} }$$ $$\displaystyle{ \frac{d[\arcsec(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 -1}} }$$ $$\displaystyle{ \frac{d[\arccsc(t)]}{dt} = -\frac{1}{\abs{t}\sqrt{t^2 -1}} }$$

Trig Integrals

 $$\int{\sin(x)~dx} = -\cos(x)+C$$ $$\int{\cos(x)~dx} = \sin(x)+C$$ $$\int{\tan(x)~dx} = -\ln\abs{\cos(x)}+C$$ $$\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C$$ $$\int{\sec(x)~dx} =$$ $$\ln\abs{\sec(x)+\tan(x)}+C$$ $$\int{\csc(x)~dx} =$$ $$-\ln\abs{\csc(x)+\cot(x)}+C$$

### Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations

Precalculus

### Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

free ideas to save on bags & supplies

 The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.