\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \)

You CAN Ace Calculus

Topics You Need To Understand For This Page

Trig Identities and Formulas

basic trig identities

\(\sin^2\theta+\cos^2\theta=1\)   |   \(1+\tan^2\theta=\sec^2\theta\)

\(\displaystyle{\tan\theta=\frac{\sin\theta}{\cos\theta}}\)   |   \(\displaystyle{\cot\theta=\frac{\cos\theta}{\sin\theta}}\)

\(\displaystyle{\sec\theta=\frac{1}{\cos\theta}}\)   |   \(\displaystyle{\csc\theta=\frac{1}{\sin\theta}}\)

power reduction (half-angle) formulae

\(\displaystyle{\sin^2\theta=\frac{1-\cos(2\theta)}{2}}\)   |   \(\displaystyle{\cos^2\theta=\frac{1+\cos(2\theta)}{2}}\)

double angle formulae

\(\sin(2\theta)=2\sin\theta\cos\theta\)   |   \(\cos(2\theta)=\cos^2\theta-\sin^2\theta\)

links

list of trigonometric identities - wikipedia

trig sheets - pauls online notes

17calculus trig formulas - full list

Trig Derivatives and Integrals

basic trig derivatives

\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\)

\(\displaystyle{ \frac{d[\cos(t)]}{dt} = -\sin(t) }\)

\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\)

\(\displaystyle{ \frac{d[\cot(t)]}{dt} = -\csc^2(t) }\)

\(\displaystyle{ \frac{d[\sec(t)]}{dt} = }\) \(\sec(t)\tan(t) \)

\(\displaystyle{ \frac{d[\csc(t)]}{dt} = }\) \( -\csc(t)\cot(t) \)

basic trig integrals

\(\int{\sin(x)~dx} = -\cos(x)+C\)

\(\int{\cos(x)~dx} = \sin(x)+C\)

\(\int{\tan(x)~dx} = -\ln\abs{\cos(x)}+C\)

\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\)

\(\int{\sec(x)~dx} = \ln\abs{\sec(x)+\tan(x)}+C\)

\(\int{\csc(x)~dx} = -\ln\abs{\csc(x)+\cot(x)}+C\)

reduction formulae

Reduction Formulas (n is a positive integer)

\(\displaystyle{\int{\sin^n x~dx} = -\frac{\sin^{n-1}x\cos x}{n} + }\) \(\displaystyle{ \frac{n-1}{n}\int{\sin^{n-2}x~dx} }\)

\(\displaystyle{\int{\cos^n x~dx} = \frac{\cos^{n-1}x\sin x}{n} + }\) \(\displaystyle{ \frac{n-1}{n}\int{\cos^{n-2}x~dx}}\)

Reduction Formulas (n is an integer and \(n>1\))

\(\displaystyle{\int{\tan^n x~dx}= \frac{\tan^{n-1}x}{n-1} - \int{\tan^{n-2}x~dx}}\)

\(\displaystyle{\int{\sec^n x~dx} = \frac{\sec^{n-2}x\tan x}{n-1} + }\) \(\displaystyle{ \frac{n-2}{n-1}\int{\sec^{n-2}x~dx}}\)

links

17calculus trig formulas - full list

Related Topics and Links

17Calculus Subjects Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

memorize to learn

This page covers the derivation and use of the secant reduction formula for integration.

Secant Reduction Formulas (n is an integer and \(n>1\))

\(\displaystyle{\int{\sec^n x~dx} = \frac{\sec^{n-2}x\tan x}{n-1}+\frac{n-2}{n-1}\int{\sec^{n-2}x~dx}}\)

When you have an integral with only secant where the power is greater than one, you can use the secant reduction formula, repeatedly if necessary, to reduce the power until you end up with either \(\sec x\) or \(\sec^2 x\). Let's derive the formula and then work some practice problems.

Deriving The Secant Reduction Formula

Separate out a \(\sec^2x\) term.

\(\int{\sec^nx~dx} = \int{\sec^{n-2}x\sec^2x~dx}\)

Use integration by parts.

\(u=\sec^{n-2}x \to\) \(du=(n-2)(\sec^{n-3}x)[\sec x\tan x]~dx\)

\(dv = \sec^2x~dx \to v=\tan x\)

\(\int{\sec^nx~dx} =\) \(\sec^{n-2}x\tan x\) \(-\) \(\int{(n-2)\sec^{n-2}x\tan^2x~dx}\)

Use the identity \(\sec^2x = 1+\tan^2x\) to replace \(\tan^2x\) with \(\sec^2x-1\) in the last integral.

\(\int{\sec^nx~dx} =\) \(\sec^{n-2}x\tan x\) \(-\) \((n-2)\int{\sec^{n-2}x~(\sec^2x-1)~dx}\)

Distribute \((n-2)\sec^{n-2}x\) in the integral on the right and separate into two integrals.

\(\int{\sec^nx~dx} =\) \(\sec^{n-2}x\tan x\) \(-\) \((n-2)\int{\sec^nx~dx}\) \(+\) \((n-2)\int{\sec^{n-2}x~dx}\)

Add \((n-2)\int{\sec^nx~dx}\) to both sides of the equation, noticing that \(n-2+1 = n-1\).

\((n-1)\int{\sec^nx~dx} =\) \(\sec^{n-2}x\tan x\) \(+\) \((n-2)\int{\sec^{n-2}x~dx}\)

Solve for \(\int{\sec^nx~dx}\) by dividing both sides by \((n-1)\).

\(\displaystyle{ \int{\sec^nx~dx} = }\) \(\displaystyle{ \frac{\sec^{n-2}x\tan x}{n-1} }\) \(+\) \(\displaystyle{ \frac{n-2}{n-1}\int{\sec^{n-2}x~dx} }\)

This last equation is the secant reduction formula. Here is a video showing this same derivation.

PatrickJMT - \(\sec^n(x)\) [min-secs]

video by PatrickJMT

Now let's work some practice problems.

Practice

\(\displaystyle{ \int{ \sec^4x ~dx } }\)

Problem Statement

\(\displaystyle{ \int{ \sec^4x ~dx } }\)

Solution

96 solution video

video by PatrickJMT

close solution
Real Time Web Analytics