This page covers the derivation and use of the secant reduction formula for integration.
Recommended Books on Amazon (affiliate links)  

Join Amazon Student  FREE TwoDay Shipping for College Students 
Secant Reduction Formula (n is an integer and \(n>1\)) 

\(\displaystyle{\int{\sec^n x~dx} = \frac{\sec^{n2}x\tan x}{n1}+\frac{n2}{n1}\int{\sec^{n2}x~dx}}\) 
When you have an integral with only secant where the power is greater than one, you can use the secant reduction formula, repeatedly if necessary, to reduce the power until you end up with either \(\sec x\) or \(\sec^2 x\). Let's derive the formula and then work some practice problems.
Deriving The Secant Reduction Formula
Separate out a \(\sec^2x\) term. 
\(\int{\sec^nx~dx} = \int{\sec^{n2}x\sec^2x~dx}\) 
Use integration by parts. 
\(u=\sec^{n2}x \to\) \(du=(n2)(\sec^{n3}x)[\sec x\tan x]~dx\) 
\(dv = \sec^2x~dx \to v=\tan x\) 
\(\int{\sec^nx~dx} =\) \(\sec^{n2}x\tan x\) \(\) \(\int{(n2)\sec^{n2}x\tan^2x~dx}\) 
Use the identity \(\sec^2x = 1+\tan^2x\) to replace \(\tan^2x\) with \(\sec^2x1\) in the last integral. 
\(\int{\sec^nx~dx} =\) \(\sec^{n2}x\tan x\) \(\) \((n2)\int{\sec^{n2}x~(\sec^2x1)~dx}\) 
Distribute \((n2)\sec^{n2}x\) in the integral on the right and separate into two integrals. 
\(\int{\sec^nx~dx} =\) \(\sec^{n2}x\tan x\) \(\) \((n2)\int{\sec^nx~dx}\) \(+\) \((n2)\int{\sec^{n2}x~dx}\) 
Add \((n2)\int{\sec^nx~dx}\) to both sides of the equation, noticing that \(n2+1 = n1\). 
\((n1)\int{\sec^nx~dx} =\) \(\sec^{n2}x\tan x\) \(+\) \((n2)\int{\sec^{n2}x~dx}\) 
Solve for \(\int{\sec^nx~dx}\) by dividing both sides by \((n1)\). 
\(\displaystyle{ \int{\sec^nx~dx} = }\) \(\displaystyle{ \frac{\sec^{n2}x\tan x}{n1} }\) \(+\) \(\displaystyle{ \frac{n2}{n1}\int{\sec^{n2}x~dx} }\) 

This last equation is the secant reduction formula. Here is a video showing this same derivation.
video by PatrickJMT 

Now let's work some practice problems.
Practice
Unless otherwise instructed, evaluate these integrals directly, then check your answer using the reduction formula.
\(\displaystyle{ \int{ \sec^3x ~dx } }\)
Problem Statement 

Evaluate \(\displaystyle{ \int{ \sec^3x ~dx } }\) using integration by parts and then verify your answer using the secant reduction formula.
Solution 

video by The Organic Chemistry Tutor 

close solution

Log in to rate this practice problem and to see it's current rating. 

Evaluate \(\displaystyle{ \int{ \sec^4x ~dx } }\) using the secant reduction formula.
Problem Statement 

Evaluate \(\displaystyle{ \int{ \sec^4x ~dx } }\) using the secant reduction formula.
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

You CAN Ace Calculus
basic trig identities 

\(\sin^2\theta+\cos^2\theta=1\)  \(1+\tan^2\theta=\sec^2\theta\) 
\(\displaystyle{\tan\theta=\frac{\sin\theta}{\cos\theta}}\)  \(\displaystyle{\cot\theta=\frac{\cos\theta}{\sin\theta}}\) 
\(\displaystyle{\sec\theta=\frac{1}{\cos\theta}}\)  \(\displaystyle{\csc\theta=\frac{1}{\sin\theta}}\) 
power reduction (halfangle) formulae 
\(\displaystyle{\sin^2\theta=\frac{1\cos(2\theta)}{2}}\)  \(\displaystyle{\cos^2\theta=\frac{1+\cos(2\theta)}{2}}\) 
double angle formulae 
\(\sin(2\theta)=2\sin\theta\cos\theta\)  \(\cos(2\theta)=\cos^2\theta\sin^2\theta\) 
links 
basic trig derivatives  

\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\) 
\(\displaystyle{ \frac{d[\cos(t)]}{dt} = \sin(t) }\)  
\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\) 
\(\displaystyle{ \frac{d[\cot(t)]}{dt} = \csc^2(t) }\)  
\(\displaystyle{ \frac{d[\sec(t)]}{dt} = }\) \(\sec(t)\tan(t) \) 
\(\displaystyle{ \frac{d[\csc(t)]}{dt} = }\) \( \csc(t)\cot(t) \)  
basic trig integrals  
\(\int{\sin(x)~dx} = \cos(x)+C\)  
\(\int{\cos(x)~dx} = \sin(x)+C\)  
\(\int{\tan(x)~dx} = \ln\abs{\cos(x)}+C\)  
\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\)  
\(\int{\sec(x)~dx} = \ln\abs{\sec(x)+\tan(x)}+C\)  
\(\int{\csc(x)~dx} = \ln\abs{\csc(x)+\cot(x)}+C\)  
reduction formulae  
Reduction Formulas (n is a positive integer)  
\(\displaystyle{\int{\sin^n x~dx} = \frac{\sin^{n1}x\cos x}{n} + }\) \(\displaystyle{ \frac{n1}{n}\int{\sin^{n2}x~dx} }\)  
\(\displaystyle{\int{\cos^n x~dx} = \frac{\cos^{n1}x\sin x}{n} + }\) \(\displaystyle{ \frac{n1}{n}\int{\cos^{n2}x~dx}}\)  
Reduction Formulas (n is an integer and \(n>1\))  
\(\displaystyle{\int{\tan^n x~dx}= \frac{\tan^{n1}x}{n1}  \int{\tan^{n2}x~dx}}\)  
\(\displaystyle{\int{\sec^n x~dx} = \frac{\sec^{n2}x\tan x}{n1} + }\) \(\displaystyle{ \frac{n2}{n1}\int{\sec^{n2}x~dx}}\)  
links  
related topics on other pages 

external links you may find helpful 
The Unit Circle
The Unit Circle [wikipedia]
Basic Trig Identities
Set 1  basic identities  

\(\displaystyle{ \tan(t) = \frac{\sin(t)}{\cos(t)} }\) 
\(\displaystyle{ \cot(t) = \frac{\cos(t)}{\sin(t)} }\) 
\(\displaystyle{ \sec(t) = \frac{1}{\cos(t)} }\) 
\(\displaystyle{ \csc(t) = \frac{1}{\sin(t)} }\) 
Set 2  squared identities  

\( \sin^2t + \cos^2t = 1\) 
\( 1 + \tan^2t = \sec^2t\) 
\( 1 + \cot^2t = \csc^2t\) 
Set 3  doubleangle formulas  

\( \sin(2t) = 2\sin(t)\cos(t)\) 
\(\displaystyle{ \cos(2t) = \cos^2(t)  \sin^2(t) }\) 
Set 4  halfangle formulas  

\(\displaystyle{ \sin^2(t) = \frac{1\cos(2t)}{2} }\) 
\(\displaystyle{ \cos^2(t) = \frac{1+\cos(2t)}{2} }\) 
Trig Derivatives
\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\) 
\(\displaystyle{ \frac{d[\cos(t)]}{dt} = \sin(t) }\)  
\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\) 
\(\displaystyle{ \frac{d[\cot(t)]}{dt} = \csc^2(t) }\)  
\(\displaystyle{ \frac{d[\sec(t)]}{dt} = \sec(t)\tan(t) }\) 
\(\displaystyle{ \frac{d[\csc(t)]}{dt} = \csc(t)\cot(t) }\) 
Inverse Trig Derivatives
\(\displaystyle{ \frac{d[\arcsin(t)]}{dt} = \frac{1}{\sqrt{1t^2}} }\) 
\(\displaystyle{ \frac{d[\arccos(t)]}{dt} = \frac{1}{\sqrt{1t^2}} }\)  
\(\displaystyle{ \frac{d[\arctan(t)]}{dt} = \frac{1}{1+t^2} }\) 
\(\displaystyle{ \frac{d[\arccot(t)]}{dt} = \frac{1}{1+t^2} }\)  
\(\displaystyle{ \frac{d[\arcsec(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 1}} }\) 
\(\displaystyle{ \frac{d[\arccsc(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 1}} }\) 
Trig Integrals
\(\int{\sin(x)~dx} = \cos(x)+C\) 
\(\int{\cos(x)~dx} = \sin(x)+C\)  
\(\int{\tan(x)~dx} = \ln\abs{\cos(x)}+C\) 
\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\)  
\(\int{\sec(x)~dx} = \) \( \ln\abs{\sec(x)+\tan(x)}+C\) 
\(\int{\csc(x)~dx} = \) \( \ln\abs{\csc(x)+\cot(x)}+C\) 
To bookmark this page and practice problems, log in to your account or set up a free account.
Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.
 
The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free. 
How to Ace the Rest of Calculus: The Streetwise Guide, Including MultiVariable Calculus 

Practice Instructions
Unless otherwise instructed, evaluate these integrals directly, then check your answer using the reduction formula.