\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \) \( \newcommand{\cm}{\mathrm{cm} } \) \( \newcommand{\sec}{\mathrm{sec} } \) \( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \) \( \newcommand{\arccot}{\mathrm{arccot} } \) \( \newcommand{\arcsec}{\mathrm{arcsec} } \) \( \newcommand{\arccsc}{\mathrm{arccsc} } \) \( \newcommand{\sech}{\mathrm{sech} } \) \( \newcommand{\csch}{\mathrm{csch} } \) \( \newcommand{\arcsinh}{\mathrm{arcsinh} } \) \( \newcommand{\arccosh}{\mathrm{arccosh} } \) \( \newcommand{\arctanh}{\mathrm{arctanh} } \) \( \newcommand{\arccoth}{\mathrm{arccoth} } \) \( \newcommand{\arcsech}{\mathrm{arcsech} } \) \( \newcommand{\arccsch}{\mathrm{arccsch} } \)

17Calculus Integrals - Surface Area

Limits

Using Limits

Limits FAQs

Derivatives

Graphing

Applications

Derivatives FAQs

Integrals

Trig Integrals

Area/Volume

Applications

Infinite Series

Applications

Tools

Parametrics

Conics

Polar Coordinates

Laplace Transforms

Tools

Calculus Tools

Additional Tools

Articles

This page covers the topic of surface area of an explicitly defined smooth curve revolved around an axis in the xy-plane in cartesian (rectangular) coordinates. [You can also calculate surface area in polar coordinates and for surfaces described parametrically.]

Setting up the integral to calculate surface area is fairly straight-forward. The difficulty with this topic occurs when evaluating the integral, which can quickly become quite complicated. Consequently, most problems you get will be carefully hand-picked by your instructor or the textbook author so that you can evaluate the integrals with the techniques you know. The comments we made on the arc length page about tricks to evaluating these integrals apply here as well.

First, let's look at a video clip explaining how to derive the surface area equations.

MIP4U - Surface Area of Revolution - Part 1 of 2 [5min-16secs]

video by MIP4U

rotation about the x-axis

\(\int_{a}^{b}{2\pi y ~ ds}\)

rotation about the y-axis

\(\int_{c}^{d}{2\pi x ~ ds}\)

\(ds = \sqrt{1 + [f'(x)]^2} ~dx \) or \( ds = \sqrt{1 + [g'(y)]^2} ~dy \)

Notes
1. \(ds\) in the last row above is the differential arc length as discussed on the arc length page. Using \(ds\) allows us to write the integral in a more compact form and it is easier to see what is going on.
2. Which \(ds\) you use depends on how the graph is described.

Here is a great video clip explaining these equations in more detail.

PatrickJMT - Finding Surface Area - Part 1 [1min-2secs]

video by PatrickJMT

Practice

Instructions - - Unless otherwise instructed, calculate the surface area of the given line segment rotated about the given axis. Give all answers in exact form.

equation: \(y=\sqrt{x}\)

range: \(4\leq x\leq9\)

axis of rotation: x-axis

Problem Statement

equation: \(y=\sqrt{x}\)

range: \(4\leq x\leq9\)

axis of rotation: x-axis

Solution

He works this problem twice in two videos, using different ds equations.

1195 video

video by PatrickJMT

1195 video

video by PatrickJMT

close solution

Log in to rate this practice problem.

equation: \(y=x^2-\frac{1}{8}\ln(x)\)

range: \(1\leq x\leq2\)

axis of rotation: y-axis

Problem Statement

equation: \(y=x^2-\frac{1}{8}\ln(x)\)

range: \(1\leq x\leq2\)

axis of rotation: y-axis

Solution

1196 video

video by Krista King Math

close solution

Log in to rate this practice problem.

equation: \(y=\sqrt{4-x^2}\)

range: \(-1\leq x\leq1\)

axis of rotation: x-axis

Problem Statement

equation: \(y=\sqrt{4-x^2}\)

range: \(-1\leq x\leq1\)

axis of rotation: x-axis

Solution

1197 video

video by Krista King Math

close solution

Log in to rate this practice problem.

equation: \(f(x)=(1/3)x^3\)

range: \([0,2]\)

axis of rotation: x-axis

Problem Statement

equation: \(f(x)=(1/3)x^3\)

range: \([0,2]\)

axis of rotation: x-axis

Solution

1198 video

video by MIP4U

close solution

Log in to rate this practice problem.

equation: \(f(x)=\sqrt[3]{x}\)

range: \([0,8]\)

axis of rotation: y-axis

Problem Statement

equation: \(f(x)=\sqrt[3]{x}\)

range: \([0,8]\)

axis of rotation: y-axis

Solution

1199 video

video by MIP4U

close solution

Log in to rate this practice problem.

equation: \(y=\sqrt[3]{6x}\)

range: \(0 \leq x \leq 4/3\)

axis of rotation: y-axis

Problem Statement

equation: \(y=\sqrt[3]{6x}\)

range: \(0 \leq x \leq 4/3\)

axis of rotation: y-axis

Solution

1915 video

video by MIP4U

close solution

Log in to rate this practice problem.

equation: \(f(x)=\sqrt{x}\)

range: \(0\leq x\leq 4\)

axis of rotation: x-axis

Problem Statement

equation: \(f(x)=\sqrt{x}\)

range: \(0\leq x\leq 4\)

axis of rotation: x-axis

Final Answer

\([(17)^{3/2}-1]\pi/6\)

Problem Statement

equation: \(f(x)=\sqrt{x}\)

range: \(0\leq x\leq 4\)

axis of rotation: x-axis

Solution

2002 video

video by Dr Chris Tisdell

Final Answer

\([(17)^{3/2}-1]\pi/6\)

close solution

Log in to rate this practice problem.

You CAN Ace Calculus

Topics You Need To Understand For This Page

Related Topics and Links

external links you may find helpful

surface area youtube playlist

To bookmark this page and practice problems, log in to your account or set up a free account.

Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

Differential Equations Topics Listed Alphabetically

Precalculus Topics Listed Alphabetically

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

calculus motivation - music and learning

Get great tutoring at an affordable price with Chegg. Subscribe today and get your 1st 30 minutes Free!

The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

Do NOT follow this link or you will be banned from the site!

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.

17calculus

Copyright © 2010-2020 17Calculus, All Rights Reserved     [Privacy Policy]     [Support]     [About]

mathjax.org
Real Time Web Analytics
17Calculus
We use cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Website Privacy Policy.