## 17Calculus - Sine-Cosine Trig Integration

##### 17Calculus

This page covers integration of functions involving sines and/or cosines in more advanced form that require techniques other than just integration by substitution. [If you are first learning sine and cosine in integration, check out the basics of trig integration page.]
Most of the techniques you need are discussed on this page except for the sine and cosine reduction formulas. We derive them and give you practice problems on two separate pages, the sine reduction formula page and the cosine reduction formula page.

Topics You Need To Understand For This Page

### Difference Between Trig Integration and Trig Substitution

Trig integration, covered on this page, is the evaluation of integrals that already have trig functions in the integrand.

Trig substitution is a technique that takes an integrand that most likely does NOT contain any trig functions, and uses some trig identities to introduce trig functions into the integrand. Once the integral is completely transformed, then trig integration is used to evaluate the integral. Once the evaluation is complete, another set of substitutions, based on the original ones, is done to convert the result back to the original variable.

### Trig Integration - Case List Summary (One Angle)

Trig Integration - Complete Case List Summary (One Angle)

$$\int{\sin^mx \cos^nx~dx}$$

$$n=0$$

$$\int{\sin^mx~dx}$$

use reduction formula

$$m=0$$

$$\int{\cos^mx~dx}$$

use reduction formula

odd m

$$\int{\sin^{2k+1}x\cos^nx~dx}$$

factor out $$\sin x$$, use $$\sin^2x=1-\cos^2x$$ and let $$u=\cos x$$

odd n

$$\int{\sin^mx\cos^{2k+1}x~dx}$$

factor out $$\cos x$$, use $$\cos^2x=1-\sin^2x$$ and let $$u=\sin x$$

even m and n

$$\int{\sin^{2k}x\cos^{2p}x~dx}$$

use half-angle formulas

$$\int{\sec^mx \tan^nx~dx}$$

$$n=0$$

$$\int{\sec^mx~dx}$$

use reduction formula

$$m=0$$

$$\int{\tan^nx~dx}$$

use reduction formula or use $$\sec^2x=1+\tan^2x$$, expand out
and try one of the following two cases

even m

$$\int{\sec^{2k}x\tan^nx~dx}$$

factor out $$\sec^2x$$, use $$\sec^2x=1+\tan^2x$$ and let $$u=\tan x$$

odd n

$$\int{\sec^mx\tan^{2k+1}x~dx}$$

factor out $$\sec x\tan x$$, use $$\sec^2x=1+\tan^2x$$ and let $$u=\sec x$$

none of the above 4 cases hold

convert trig functions to sine and cosine and
try the sine/cosine techniques

In order to choose the technique you need to use, you need to determine the form of the integrand and how many angles are involved.

One Angle

When all the sine and cosine terms in the integrand involve the same angle, here is what you do.

 Case 1 - one sine term only: $$\int{ \sin^n(\theta) ~d\theta}$$ Use the reduction formula found on the sine reduction formula page. Case 2 - one cosine term only: $$\int{ \cos^n(\theta) ~d\theta}$$ Use the reduction formula discussed on the cosine reduction formula page. Case 3 - odd term: $$\int{ \sin^m(\theta)~\cos^n(\theta) ~d\theta}$$ with odd m or n Factor out the odd term (if they are both odd, you can choose) and use $$\sin^2\theta + \cos^2\theta = 1$$ on the remaining term, then use substitution. Case 4 - even term: $$\int{ \sin^m(\theta)~\cos^n(\theta) ~d\theta}$$ with even m and n Use the half-angle formulas to remove the powers.

Okay, let's work some practice problems before we go on.

Practice

Unless otherwise instructed, evaluate these integrals using the techniques on this page. Give all answers in exact, simplified form.

Basic

$$\displaystyle{ \int{ \sin^2x \cos^3x ~dx } }$$

Problem Statement

$$\displaystyle{ \int{ \sin^2x \cos^3x ~dx } }$$

Solution

### Michael Penn - 4145 video solution

video by Michael Penn

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin^4(2x)\cos(2x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin^4(2x)\cos(2x)~dx } }$$. Give your answer in exact, simplified and factored form.

$$\displaystyle{ \int{ \sin^4(2x)\cos(2x)~dx } = \frac{\sin^5(2x)}{10}+C }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin^4(2x)\cos(2x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

Our first inclination might be to use the half-angle formulas for $$\sin(2x)$$ and $$\cos(2x)$$. However, on closer inspection, we can see that both of the angles are the same, i.e. both are $$2x$$. So this falls under case 3 above. The first part is done, i.e. the odd cosine is already factored out, so we are ready to use substitution. So we let $$u=\sin(2x)$$.
This gives us $$du = 2\cos(2x)dx \to du/2 = \cos(2x)dx$$

 $$\displaystyle{ \int{ \sin^4(2x)\cos(2x) ~dx } = \int{u^4 (du/2)} }$$ $$\displaystyle{\frac{1}{2}\frac{u^5}{5} + C }$$ $$\displaystyle{ \frac{u^5}{10} + C }$$ $$\displaystyle{ \frac{\sin^5(2x)}{10} + C }$$

$$\displaystyle{ \int{ \sin^4(2x)\cos(2x)~dx } = \frac{\sin^5(2x)}{10}+C }$$

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \cos^5x\sin^5x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos^5x\sin^5x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

For this problem, he doesn't go into a lot of detail in the integration. I would probably leave the integral as
$$\displaystyle{ \int{ (\sin^5x - 2\sin^7x + \sin^9x) } }$$ $$\cos x ~dx$$ and use the substitution $$u = \sin x$$ to get
$$\displaystyle{ \int{ u^5 - 2u^7 + u^9 ~du } = \frac{u^6}{6} - \frac{u^8}{4} + \frac{u^{10}}{10} + C }$$
The final answer follows more directly from this.

### Dr Chris Tisdell - 86 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \cos^4x\sin^3x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos^4x\sin^3x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Dr Chris Tisdell - 87 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin^2x~\cos^2x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin^2x~\cos^2x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 94 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{\int_{0}^{\pi/2}{\sin^2x~\cos^2x~dx}}$$

Problem Statement

Evaluate $$\displaystyle{\int_{0}^{\pi/2}{\sin^2x~\cos^2x~dx}}$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 110 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin^3x~\sec^2x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin^3x~\sec^2x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### MIT OCW - 107 video solution

video by MIT OCW

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{\int{\sin^3x~\cos^2x~dx}}$$

Problem Statement

Evaluate $$\displaystyle{\int{\sin^3x~\cos^2x~dx}}$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 92 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{\int{\sin^3x~\cos^3x~dx}}$$

Problem Statement

Evaluate $$\displaystyle{\int{\sin^3x~\cos^3x~dx}}$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 93 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int_{ \pi/2}^{\pi}{ \sin^3 \theta ~ \cos^2 \theta ~ d\theta } }$$

Problem Statement

Evaluate $$\displaystyle{ \int_{ \pi/2}^{\pi}{ \sin^3 \theta ~ \cos^2 \theta ~ d\theta } }$$. Give your answer in exact, simplified and factored form.

Solution

### Dr Chris Tisdell - 1827 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

$$\int{\cos^5(\theta)~d\theta}$$

Problem Statement

Evaluate $$\int{\cos^5(\theta)~d\theta}$$. Give your answer in exact, simplified and factored form.

$$\sin\theta-(2/3)\sin^3\theta +(1/5)\sin^5\theta+K$$

Problem Statement

Evaluate $$\int{\cos^5(\theta)~d\theta}$$. Give your answer in exact, simplified and factored form.

Solution

At about the 4min 30sec mark in this video he jumps from $$\int{ -2\sin^2\theta\cos\theta ~d\theta }$$ to the answer $$(-2/3)\sin^3\theta$$. Later on in the video he explains how to use an identity often found in an integral table to get this.
However, we would just use integration by substitution by letting $$u=\sin\theta$$ to get this result.

### Dr Chris Tisdell - 1946 video solution

video by Dr Chris Tisdell

$$\sin\theta-(2/3)\sin^3\theta +(1/5)\sin^5\theta+K$$

Log in to rate this practice problem and to see it's current rating.

Intermediate

$$\displaystyle{ \int{ \cos^4x~\sin^2x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos^4x~\sin^2x~dx } }$$. Give your answer in exact, simplified and factored form.

$$\displaystyle{\frac{1}{192}\left[ 12x + 4\sin^3(2x)-3\sin(4x)\right] + C}$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos^4x~\sin^2x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

$$\int{\cos^4 x \sin^2 x~dx}$$

use the half-angle formulas $$\cos^2 t = [1+\cos(2t)]/2$$ and $$\sin^2 t = [1-\cos(2t)]/2$$

$$\displaystyle{\int{\left[ \frac{1+\cos(2x)}{x}\right]^2 \left[ \frac{1-\cos(2x)}{2}\right]~dx}}$$

$$\displaystyle{\frac{1}{8}\int{[1+2\cos(2x)+\cos^2(2x)][1-\cos(2x)]~dx}}$$

$$\displaystyle{\frac{1}{8}\int{1+\cos(2x)-\cos^2{2x}-\cos^3(2x)~dx}}$$

on the third term, use the half-angle formula again;
on the fourth term pull out one cosine and use the identity $$\cos^2(t)+\sin^2(t)=1$$, i.e. $$\cos^3(2x)=\cos^2(2x)\cos(2x) =$$ $$(1-\sin^2(2x))\cos(2x)$$

$$\displaystyle{\frac{1}{8}\left[ x + \frac{\sin(2x)}{2} - \int{\frac{1+\cos(4x)}{2}~dx} - \int{[1-\sin^2(2x)]\cos(2x)~dx}\right]}$$

on the last term, we will use integration by substitution as follows

$$u=\sin(2x) \to du=2\cos(2x)~dx$$

$$\int{[1-\sin^2(2x)]\cos(2x)~dx} =$$ $$\int{(1-u^2)~du/2} =$$ $$(1/2)(u-u^3/3)$$

placing this last result in the full integral, we have

$$\displaystyle{\frac{1}{8}\left[ x+\frac{\sin(2x)}{2} - \frac{x}{2} - \frac{\sin(4x)}{8} - \frac{\sin(2x)}{2} + \frac{\sin^3(2x)}{6}\right] + C}$$

simplify to get the final answer

$$\displaystyle{\frac{1}{192}\left[ 12x + 4\sin^3(2x)-3\sin(4x)\right] + C}$$

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{\int_{0}^{\pi/2}{\sin^7\theta~\cos^5\theta~d\theta}}$$

Problem Statement

Evaluate $$\displaystyle{\int_{0}^{\pi/2}{\sin^7\theta~\cos^5\theta~d\theta}}$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 114 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \cos^4x~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos^4x~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 115 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{\int{\sin^2(\pi x)~\cos^5(\pi x)~dx}}$$

Problem Statement

Evaluate $$\displaystyle{\int{\sin^2(\pi x)~\cos^5(\pi x)~dx}}$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 120 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

Sines/Cosines in Denominator

Up until now, we have looked at only the case when all sine and cosine terms are in the numerator. So, what do you do when they are in the denominator? We will look at the case when they are mixed, i.e. terms are in both the numerator and denominator and, secondly, when all terms are in the denominator.
First, there is no definite formula to use for every case. So, to know when to use a technique, you need lots of practice and experience. Then you get a feel for what works and what doesn't.
1. When you have sine/cosine terms in both the numerator and denominator, usually substitution will work along with the techniques already listed above. You may also need to use trig identities like $$\sin^2\theta + \cos^2\theta = 1$$ to replace terms.
2. When all the terms are in the denominator, one technique to try is replacing the one in the numerator with $$\sin^2\theta + \cos^2\theta$$ and separate the integral into two terms.
Try these ideas on these practice problems.

Practice

Unless otherwise instructed, evaluate these integrals using the techniques on this page. Give all answers in exact, simplified form.

$$\displaystyle{ \int{ \frac{\cos(x) \sin(\csc~x)}{\sin^2(x)} ~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\cos(x) \sin(\csc~x)}{\sin^2(x)} ~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 119 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \frac{\sin^2 x}{\cos^2 x}~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^2 x}{\cos^2 x}~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Michel vanBiezen - 2310 video solution

video by Michel vanBiezen

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \frac{1}{\sin x \cos^3 x}~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{1}{\sin x \cos^3 x}~dx } }$$. Give your answer in exact, simplified, factored form.

Solution

### Michel vanBiezen - 2309 video solution

video by Michel vanBiezen

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \frac{\sin^3 x}{\cos x}~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^3 x}{\cos x}~dx } }$$. Give your answer in exact, simplified and factored form.

Hint

1. Write the numerator as $$\sin^2 x \sin x$$.
2. Replace $$\sin^2 x$$ with $$1-\cos^2 x$$.
3. Separate into two integrals, evaluating using integration by substitution.

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^3 x}{\cos x}~dx } }$$. Give your answer in exact, simplified and factored form.

$$-\ln|\cos x| - (1/2)\sin^2 x + C$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^3 x}{\cos x}~dx } }$$. Give your answer in exact, simplified and factored form.

Hint

1. Write the numerator as $$\sin^2 x \sin x$$.
2. Replace $$\sin^2 x$$ with $$1-\cos^2 x$$.
3. Separate into two integrals, evaluating using integration by substitution.

Solution

### Michel vanBiezen - 2315 video solution

video by Michel vanBiezen

$$-\ln|\cos x| - (1/2)\sin^2 x + C$$

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \frac{\sin^3x}{\cos^3x} ~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^3x}{\cos^3x} ~dx } }$$. Give your answer in exact, simplified and factored form.

$$(1/2)\tan^2x + \ln|\cos x| + C_1$$ or $$(1/2)/\cos^2x + \ln|\cos x| + C_2$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{\sin^3x}{\cos^3x} ~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

This integral is solved two different ways, shown in the first two videos. In the two videos, he gets what looks like two different answers. In the third video he shows that they differ only by a constant. He does it in a unique way though, by taking the derivative of the two answers and noticing they are equal. In the fourth video, he compares actual values to notice that the two answers differ by 0.5.
After all that work, I believe it is very easy to show that the answers differ only by a constant. Here is how.
Notice that the terms that don't match are $$0.5\tan^2x$$ and $$0.5/\cos^2x$$. Well, we know that $$1/\cos x = \sec x$$. So $$1/\cos^2x = \sec^2x$$. But we have the identity $$\sec^2x = 1+\tan^2x$$. So $$0.5/\cos^2x = 0.5\sec^2x = 0.5(1+\tan^2x) = 0.5+0.5\tan^2x.$$ So we know that the two answers differ by the constant 0.5. This 0.5 is absorbed in the general constant in each answer. So technically, he should have used two different symbols for the constants, like $$c_1$$ and $$c_2$$.

### Michel vanBiezen - 2316 video solution

video by Michel vanBiezen

### Michel vanBiezen - 2316 video solution

video by Michel vanBiezen

### Michel vanBiezen - 2316 video solution

video by Michel vanBiezen

### Michel vanBiezen - 2316 video solution

video by Michel vanBiezen

$$(1/2)\tan^2x + \ln|\cos x| + C_1$$ or $$(1/2)/\cos^2x + \ln|\cos x| + C_2$$

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \frac{1}{\cos^3x } ~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \frac{1}{\cos^3x } ~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Michel vanBiezen - 2333 video solution

video by Michel vanBiezen

Log in to rate this practice problem and to see it's current rating.

Two Angles

When you have different angles use the following formulas to simplify the integrand.

 both sine terms $$\displaystyle{ \sin(\alpha)\sin(\theta) = \frac{1}{2}\left[ \cos(\alpha - \theta) - \cos(\alpha + \theta) \right] }$$ both cosine terms $$\displaystyle{ \cos(\alpha)\cos(\theta) = \frac{1}{2}\left[ \cos(\alpha - \theta) + \cos(\alpha + \theta) \right] }$$ one sine term, one cosine term $$\displaystyle{ \sin(\alpha)\cos(\theta) = \frac{1}{2}\left[ \sin(\alpha + \theta) + \sin(\alpha - \theta) \right] }$$

Try these ideas on these practice problems.

Practice

Unless otherwise instructed, evaluate these integrals using the techniques on this page. Give all answers in exact, simplified form.

$$\displaystyle{ \int{ \sin(4x)\cos(2x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin(4x)\cos(2x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Dr Chris Tisdell - 85 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin(2x)~\cos(3x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin(2x)~\cos(3x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 99 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin(2x)~\sin(3x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin(2x)~\sin(3x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### PatrickJMT - 100 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin(8x)~\cos(5x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin(8x)~\cos(5x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 413 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin(3x)\sin(6x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin(3x)\sin(6x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 441 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \sin x~\cos(2x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \sin x~\cos(2x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### MIT OCW - 108 video solution

video by MIT OCW

Log in to rate this practice problem and to see it's current rating.

$$\displaystyle{ \int{ \cos(4\pi x)\cos(\pi x)~dx } }$$

Problem Statement

Evaluate $$\displaystyle{ \int{ \cos(4\pi x)\cos(\pi x)~dx } }$$. Give your answer in exact, simplified and factored form.

Solution

### Krista King Math - 446 video solution

video by Krista King Math

Log in to rate this practice problem and to see it's current rating.

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.