## 17Calculus Infinite Series - Root Test

In our experience, the Root Test is the least used series test to test for convergence or divergence (which is why it appears last in the infinite series table). The reason is that it is used only in very specific cases, whereas the other tests can be used for a broader range of problems. However, it can be used to determine convergence or divergence much easier than using other techniques in these very specific cases.

Root Test

For the series $$\sum{a_n}$$, let $$\displaystyle{L = \lim_{n \to \infty}{\sqrt[n]{|a_n|}}}$$.

Three cases are possible depending on the value of L.
$$L < 1$$: The series converges absolutely.
$$L = 1$$: The Root Test is inconclusive.
$$L> 1$$: The series diverges.

When To Use The Root Test

The Root Test is used when you have a function of n that also contains a power with an n. The idea is to remove or change the n in the power. The test itself is fairly straight-forward. You just need some practice using it to know under what conditions it is best to use it. One good way to learn when to use this test is by building example pages as described in the Study Techniques section.

A powerful rule that will be useful when using the root test is $$\displaystyle{ \lim_{n \to \infty}{\ln(f(n))} = \ln\left( \lim_{n \to \infty}{f(n)} \right) }$$
This is true because the natural log function is continuous. Here are a few additional rules that may be useful.

 $$\displaystyle{ \lim_{n \to \infty}{ \sqrt[n]{p}} = 1 }$$ $$p$$ is a positive constant $$\displaystyle{ \lim_{n \to \infty}{\sqrt[n]{n^p}} = 1 }$$ $$p$$ is a positive constant $$\displaystyle{ \lim_{n \to \infty}{\sqrt[n]{n}} = 1 }$$ special case of previous line with $$p=1$$ $$\displaystyle{ \lim_{n \to \infty}{\sqrt[n]{\ln~n}} = 1 }$$ $$\displaystyle{ \lim_{n \to \infty}{\sqrt[n]{n!}} = \infty }$$

We prove the first four rules above as practice problems on the L'Hôpital's Rule page. The last one can be proven using Stirlings Formula.

Practice

Unless otherwise instructed, determine whether these series converge or diverge. Use the Root Test, if possible.

Basic Problems

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{n^2+1}{2n^2+1}\right]^n } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{n^2+1}{2n^2+1}\right]^n } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{n^2+1}{2n^2+1}\right]^n } }$$ converges or diverges using the root test.

Solution

### 264 video

video by Krista King Math

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[3^n e^{-n}\right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[3^n e^{-n}\right] } }$$ converges or diverges using the root test.

The series diverges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[3^n e^{-n}\right] } }$$ converges or diverges using the root test.

Solution

### 267 video

video by PatrickJMT

The series diverges by the root test.

$$\displaystyle{ \sum_{k=1}^{\infty}{ \left[\frac{3^k}{(k+1)^k}\right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{k=1}^{\infty}{ \left[\frac{3^k}{(k+1)^k}\right] } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{k=1}^{\infty}{ \left[\frac{3^k}{(k+1)^k}\right] } }$$ converges or diverges using the root test.

Solution

### 270 video

video by Krista King Math

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{4n^2+1}{5n^2-8}\right]^n } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{4n^2+1}{5n^2-8}\right]^n } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[\frac{4n^2+1}{5n^2-8}\right]^n } }$$ converges or diverges using the root test.

Solution

### 271 video

video by MIP4U

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{e^{3n}}{n^n} \right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{e^{3n}}{n^n} \right] } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{e^{3n}}{n^n} \right] } }$$ converges or diverges using the root test.

Solution

### 273 video

video by MIP4U

The series converges by the root test.

Intermediate Problems

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^n}{3^{1+3n}} \right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^n}{3^{1+3n}} \right] } }$$ converges or diverges using the root test.

The series diverges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^n}{3^{1+3n}} \right] } }$$ converges or diverges using the root test.

Solution

### 265 video

video by Krista King Math

The series diverges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n}{n+1} \right]^{n^2} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n}{n+1} \right]^{n^2} } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n}{n+1} \right]^{n^2} } }$$ converges or diverges using the root test.

Solution

### 266 video

video by Krista King Math

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n(n^n)}{3^{n^3+1}} \right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n(n^n)}{3^{n^3+1}} \right] } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n(n^n)}{3^{n^3+1}} \right] } }$$ converges or diverges using the root test.

Solution

### 268 video

video by PatrickJMT

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n}{[\tan^{-1}(n)]^n} \right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n}{[\tan^{-1}(n)]^n} \right] } }$$ converges or diverges using the root test.

The series converges by the root test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{(-1)^n}{[\tan^{-1}(n)]^n} \right] } }$$ converges or diverges using the root test.

Solution

### 269 video

video by PatrickJMT

The series converges by the root test.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^{n-1}}{2^{3+n}} \right] } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^{n-1}}{2^{3+n}} \right] } }$$ converges or diverges using the root test.

The series diverges by the Root Test.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \left[ \frac{n^{n-1}}{2^{3+n}} \right] } }$$ converges or diverges using the root test.

Solution

### 272 video

video by MIP4U

The series diverges by the Root Test.

### root test 17calculus youtube playlist

You CAN Ace Calculus

 limits infinite limits l'hôpital's rule infinite series basics

Wikipedia - Root Test

### Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

### Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem. The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.
 Root Test When To Use The Root Test Some Helpful Rules Practice

How to Read and Do Proofs: An Introduction to Mathematical Thought Processes Save 20% on Under Armour Plus Free Shipping Over \$49! Shop Amazon - Used Textbooks - Save up to 90% When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.