## 17Calculus Infinite Series - p-Series

p-Series Convergence Theorem

$$\displaystyle{\sum_{n=1}^{\infty}{\frac{1}{n^p}} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + ~~ . . . }$$

$$0 \lt p \leq 1$$

$$p>1$$

diverges

converges

Note - In the proof section below, we show a more efficient way to write this theorem statement.

The p-series is a pretty straight-forward series to understand and use. One detail you need to notice is that the theorem covers cases only where $$p > 0$$.

 Question: Do you know what happens when $$p \leq 0$$? Think about it for a minute and then click here for the answer

Okay, so testing for convergence and divergence of p-series looks pretty easy and, fortunately, it is. But it is also very powerful. To help you cement the idea more firmly in your mind, read through the panel below discussing the proof of this test. You do not have to understand the integral test at this point to understand this proof.

### p-Series Convergence Theorem Proof

p-Series Convergence Theorem

The p-series $$\displaystyle{\sum_{n=1}^{\infty}{\frac{1}{n^p}}}$$

To prove this, we will use the Integral Test and the Special Improper Integral.

The integral test tells us that we can set up the integral $$\displaystyle{ \int_1^{\infty}{\frac{1}{x^p} dx} }$$

If this integral converges, then so does the series. Similarly, if the integral diverges, the series also diverges.

We will look at these five cases.
1. $$p > 1$$
2. $$p = 1$$
3. $$0 \lt p \leq 1$$
4. $$p = 0$$
5. $$p \lt 0$$
Note: Although the last two cases are not part of the theorem, we will show what happens in those two cases to answer the question at the top of the page and for completeness.

Let's use the Integral Test to prove convergence and divergence by calculating the corresponding improper integrals. For most of the cases, we need to set up a limit as follows

$$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{\frac{1}{x^p} dx}} }$$

Since the function $$\displaystyle{ \frac{1}{x^p} }$$ is continuous on the interval $$[1,b]$$, this integral can be evaluated. So, now let's look at each case individually.

Case 1: $$p > 1$$
When $$p > 1$$, the integral is continuous and decreasing on the interval. So the Integral Test applies.

 $$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{\frac{1}{x^p} dx}} }$$ $$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{ x^{-p} dx}} }$$ $$\displaystyle{ \lim_{b \to \infty}{ \left[ \frac{x^{-p+1}}{-p+1} \right]_{1}^{b} } }$$ $$\displaystyle{ \frac{1}{-p+1} \lim_{b \to \infty}{\left[ b^{-p+1} - 1^{-p+1} \right]} }$$ $$\displaystyle{ \frac{1}{-p+1} [ 0 - 1 ] = \frac{1}{p-1} }$$

Since $$\displaystyle{ \frac{1}{p-1} }$$ is finite, the integral converges and, therefore, by the Integral Test, the series also converges.

Case 2: $$p=1$$
When $$p = 1$$, we have

$$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{\frac{1}{x} dx}} \to \lim_{b \to \infty }{ \left[ \ln(x) \right]_{1}^{b} } \to \lim_{b \to \infty }{ \ln(b) } - 0 = \infty }$$
Since the limit is infinity, the series diverges.

Case 3: $$0 \lt p \lt 1$$
We will use the Integral Test again.

 $$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{\frac{1}{x^p} dx}} }$$ $$\displaystyle{ \lim_{b \to \infty}{ \int_1^{b}{ x^{-p} dx}} }$$ $$\displaystyle{ \lim_{b \to \infty}{ \left[ \frac{x^{-p+1}}{-p+1} \right]_{1}^{b} } }$$ $$\displaystyle{ \frac{1}{-p+1} \lim_{b \to \infty}{\left[ b^{-p+1} - 1^{-p+1} \right]} }$$

So far in these calculations, we have the same equation as we did in case 1. However, in this case, $$0 \lt p \lt 1$$, which means that the exponent $$-p+1 > 0$$ and therefore $$\displaystyle{ \lim_{b \to \infty}{ b^{-p+1} } \to \infty }$$. So the entire integral diverges, which means that the series diverges.

Case 4: $$p = 0$$
When $$p = 0$$, the series is $$\displaystyle{ \sum_{n=1}^{\infty}{1} }$$. Since $$\displaystyle{ \lim_{n \to \infty}{1} = 1 \neq 0 }$$ the divergence test tells us that the series diverges.

Case 5: $$p \lt 0$$
We can write the fraction $$\displaystyle{ \frac{1}{n^p} = n^{-p} }$$. Since $$p \lt 0$$, the exponent here is positive and so the terms are increasing. Since $$\displaystyle{ \lim_{n \to \infty}{ \frac{1}{n^p} } \neq 0 }$$, the series diverges by the divergence test.

In Summary: For the series $$\displaystyle{\sum_{n=1}^{\infty}{\frac{1}{n^p}}}$$
1. $$p > 1$$ converges by the integral test
2. $$p = 1$$ diverges by the integral test
3. $$0 \lt p \lt 1$$ diverges by the integral test
4. $$p = 0$$ diverges by the divergence test
5. $$p \lt 0$$ diverges by the divergence test

- qed -

Note: We have also seen the p-series theorem where, instead of writing $$0 \lt p \leq 1$$ for where the series diverges, it says the series diverges for $$p \leq 1$$. Of course, this includes all of the cases above. This is a more efficient way to write the theorem statement.

Euler's Constant

Here is a great video discussing one use of a p-series.
Note - - Euler's Constant is not the same as Euler's Number.

### PatrickJMT - Euler's Constant [16min-10secs]

video by PatrickJMT

Practice

Unless otherwise instructed, determine whether these series converge or diverge using the p-series convergence theorem.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{2}{n^2} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{2}{n^2} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3163 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{1.4}} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{1.4}} } }$$ converges or diverges using the p-series convergence theorem.

The series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{1.4}} } }$$ is a convergent p-series.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{1.4}} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 253 video

video by PatrickJMT

The series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{1.4}} } }$$ is a convergent p-series.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{0.7}} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{0.7}} } }$$ converges or diverges using the p-series convergence theorem.

The series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{0.7}} } }$$ is a divergent p-series.

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{0.7}} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 254 video

video by PatrickJMT

The series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{n^{0.7}} } }$$ is a divergent p-series.

$$\displaystyle{ \sum_{n=1}^{\infty}{ n^{-\pi} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ n^{-\pi} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3153 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ (n^{-2.4} + 8n^{-1.6}) } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ (n^{-2.4} + 8n^{-1.6}) } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3154 video

$$\displaystyle{ 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + . . . }$$

Problem Statement

Determine whether the series $$\displaystyle{ 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + . . . }$$ converges or diverges using the p-series convergence theorem.

Solution

This problem is solved by two different instructors.

### 3155 video

$$\displaystyle{ 1 + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{9}} + \frac{1}{\sqrt{16}} + . . . }$$

Problem Statement

Determine whether the series $$\displaystyle{ 1 + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{9}} + \frac{1}{\sqrt{16}} + . . . }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3156 video

$$\displaystyle{ 1+ \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + . . . }$$

Problem Statement

Determine whether the series $$\displaystyle{ 1+ \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + . . . }$$ converges or diverges using the p-series convergence theorem.

The series $$\displaystyle{ 1+ \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + . . . }$$ is a convergent p-series.

Problem Statement

Determine whether the series $$\displaystyle{ 1+ \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + . . . }$$ converges or diverges using the p-series convergence theorem.

Solution

### 255 video

video by PatrickJMT

The series $$\displaystyle{ 1+ \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + . . . }$$ is a convergent p-series.

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{\sqrt{n^4}} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{1}{\sqrt{n^4}} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3158 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ \sqrt{n^2} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \sqrt{n^2} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3159 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{3}{\sqrt{n^2}} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{3}{\sqrt{n^2}} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3160 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{2}{n^3 \sqrt{n}} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{2}{n^3 \sqrt{n}} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3161 video

$$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{4\sqrt{n}}{n^4} } }$$

Problem Statement

Determine whether the series $$\displaystyle{ \sum_{n=1}^{\infty}{ \frac{4\sqrt{n}}{n^4} } }$$ converges or diverges using the p-series convergence theorem.

Solution

### 3162 video

You CAN Ace Calculus

 derivatives integrals basics of infinite series For the proof, you will also need these topics. improper integrals integral test

### Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

### Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem. The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.
 p-Series p-Series Convergence Theorem Proof Euler's Constant Practice

How to Read and Do Proofs: An Introduction to Mathematical Thought Processes Save 20% on Under Armour Plus Free Shipping Over \$49! Shop Amazon - New Textbooks - Save up to 40% When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.