\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \) \( \newcommand{\cm}{\mathrm{cm} } \) \( \newcommand{\sec}{ \, \mathrm{sec} \, } \) \( \newcommand{\units}[1]{\,\text{#1}} \) \( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \) \( \newcommand{\arccot}{ \, \mathrm{arccot} \, } \) \( \newcommand{\arcsec}{ \, \mathrm{arcsec} \, } \) \( \newcommand{\arccsc}{ \, \mathrm{arccsc} \, } \) \( \newcommand{\sech}{ \, \mathrm{sech} \, } \) \( \newcommand{\csch}{ \, \mathrm{csch} \, } \) \( \newcommand{\arcsinh}{ \, \mathrm{arcsinh} \, } \) \( \newcommand{\arccosh}{ \, \mathrm{arccosh} \, } \) \( \newcommand{\arctanh}{ \, \mathrm{arctanh} \, } \) \( \newcommand{\arccoth}{ \, \mathrm{arccoth} \, } \) \( \newcommand{\arcsech}{ \, \mathrm{arcsech} \, } \) \( \newcommand{\arccsch}{ \, \mathrm{arccsch} \, } \)

17Calculus Infinite Series - Fourier Series

17Calculus
Single Variable Calculus
Derivatives
Integrals
Multi-Variable Calculus
Precalculus
Functions

Fourier Series

What is a Fourier Series?

The main idea of Fourier Series is that we want to build an infinite series, using the basic trig functions sine and cosine, that is equivalent to a more complicated function. The series can then be manipulated more easily than the original function.

Here is a great video to get you started. He explains why we need to build these functions, goes through an example and then explains the big picture.

Dr Chris Tisdell - building functions [13min-52secs]

The solution to the practice problem at the very end of this video can be found in his free workbook found here.

video by Dr Chris Tisdell

How to Calculate Fourier Series

As you saw in that video, there are some basic equations required to calculate the Fourier Series. To build a Fourier Series for a function \(f(t)\) with period \(2L\), it is required that \(f(t)\) and it's derivative \(f'(t)\) be piecewise continuous on the interval \([-L,L]\).

Fourier Series Equations

Fourier Series

\(\displaystyle{ f(t) = a_0 + \sum_{n=1}^{\infty}{ \left[ a_n \cos \frac{n \pi t}{L} + b_n \sin \frac{n \pi t}{L} \right] } }\)

constants

\(\displaystyle{ a_0 = \frac{1}{2L} \int_{-L}^{L}{f(t)~dt} }\)

\(\displaystyle{ a_n = \frac{1}{L} \int_{-L}^{L}{f(t)\cos \frac{n\pi t}{L} ~dt} }\)

\(\displaystyle{ b_n = \frac{1}{L} \int_{-L}^{L}{f(t)\sin \frac{n\pi t}{L} ~dt} }\)

Knowing if the original \(f(t)\) is either even or odd can help us a lot when finding the Fourier Series. Of course, we do not require that \(f(t)\) be even or odd, but you remember from precalculus that cosine is an even function and sine is odd. So, for even functions \(b_n=0\) and for odd functions \(a_n=0\).

Deriving The Fourier Series Coefficient Equations

So where do these equations come from?   In order to use those equations, you don't need to know where they come from but it is quite satisfying to understand why we divide by \(L\) or \(2L\) in the above formulas.   First you need understand about orthogonality since it is an integral part of the derivation of the formulas.   Here is a great video clip on orthogonality.   Note: In these two video clips, he shows the formulas with \(L=\pi\).   The logic is the same for any \(L>0\).

MIT OCW - Lec 15 | MIT 18.03 Differential Equations, Spring 2006 [clip 1]

video by MIT OCW

Okay, from that video clip, keep in mind that for two different orthogonal functions \(u(t)\) and \(v(t)\), \( \int_{-\pi}^{\pi}{ u(t)v(t)~dt } = 0 \).   In this video clip, he shows the derivation of the equations to calculate the coefficients.   Again, he does this specifically for \(L=\pi\) but the equations hold for any \(L\).

MIT OCW - Lec 15 | MIT 18.03 Differential Equations, Spring 2006 [clip 2]

video by MIT OCW

Okay, time for some practice problems.

How to Develop a Brilliant Memory Week by Week: 50 Proven Ways to Enhance Your Memory Skills

Practice

Unless otherwise instructed, find the Fourier Series for these functions.

\(\displaystyle{ f(t) = \left\{\begin{array}{rr} -1 & -\pi < t < 0 \\ 0 & t = 0, \pm \pi \\ 1 & 0 < t < \pi \end{array} \right. }\)
\( f(t) = f(t+2\pi)\) for all \(t\)

Problem Statement

Find the Fourier Series for \(\displaystyle{ f(t) = \left\{\begin{array}{rr} -1 & -\pi < t < 0 \\ 0 & t = 0, \pm \pi \\ 1 & 0 < t < \pi \end{array} \right. }\)
\( f(t) = f(t+2\pi)\) for all \(t\)

Solution

Dr Chris Tisdell - 1296 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{f(x) = \left\{\begin{array}{rr} 0 & -1 \leq x \leq 0 \\ 1 & 0 < x < 1 \end{array} \right. }\)
with period \(2\)

Problem Statement

Find the Fourier Series for \(\displaystyle{f(x) = \left\{\begin{array}{rr} 0 & -1 \leq x \leq 0 \\ 1 & 0 < x < 1 \end{array} \right. }\)
with period \(2\)

Solution

PatrickJMT - 1297 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ f(x) = \left\{\begin{array}{rr} -3 & -1 < x < 0 \\ 3 & 0 < x < 1 \end{array} \right. }\)
\( f(x) = f(x+2) \)

Problem Statement

Find the Fourier Series for \(\displaystyle{ f(x) = \left\{\begin{array}{rr} -3 & -1 < x < 0 \\ 3 & 0 < x < 1 \end{array} \right. }\)
\( f(x) = f(x+2) \)

Solution

Dr Chris Tisdell - 1298 video solution

video by Dr Chris Tisdell

Log in to rate this practice problem and to see it's current rating.

\(\displaystyle{ f(t) = \left\{ \begin{array}{rc} 1 & 0 < t < \pi \\ 0 & \pi < t < 2\pi \end{array} \right. }\)

Problem Statement

\(\displaystyle{ f(t) = \left\{ \begin{array}{rc} 1 & 0 < t < \pi \\ 0 & \pi < t < 2\pi \end{array} \right. }\)

Solution

Trefor Bazett - 4418 video solution

video by Trefor Bazett

Log in to rate this practice problem and to see it's current rating.

Problem Statement

Solution

Trefor Bazett - 4419 video solution

video by Trefor Bazett

Log in to rate this practice problem and to see it's current rating.

Really UNDERSTAND Calculus

Log in to rate this page and to see it's current rating.

To bookmark this page and practice problems, log in to your account or set up a free account.

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

free ideas to save on books

Kindle Unlimited Membership Plans

As an Amazon Associate I earn from qualifying purchases.

I recently started a Patreon account to help defray the expenses associated with this site. To keep this site free, please consider supporting me.

Support 17Calculus on Patreon

What is a Fourier Series?

How to Calculate Fourier Series

Practice Search

Practice Instructions

Unless otherwise instructed, find the Fourier Series for these functions.

Do NOT follow this link or you will be banned from the site!

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.

17calculus

Copyright © 2010-2022 17Calculus, All Rights Reserved     [Privacy Policy]     [Support]     [About]

mathjax.org
Real Time Web Analytics