\( \newcommand{\abs}[1]{\left| \, {#1} \, \right| } \) \( \newcommand{\cm}{\mathrm{cm} } \) \( \newcommand{\sec}{ \, \mathrm{sec} \, } \) \( \newcommand{\units}[1]{\,\text{#1}} \) \( \newcommand{\vhat}[1]{\,\hat{#1}} \) \( \newcommand{\vhati}{\,\hat{i}} \) \( \newcommand{\vhatj}{\,\hat{j}} \) \( \newcommand{\vhatk}{\,\hat{k}} \) \( \newcommand{\vect}[1]{\boldsymbol{\vec{#1}}} \) \( \newcommand{\norm}[1]{\|{#1}\|} \) \( \newcommand{\arccot}{ \, \mathrm{arccot} \, } \) \( \newcommand{\arcsec}{ \, \mathrm{arcsec} \, } \) \( \newcommand{\arccsc}{ \, \mathrm{arccsc} \, } \) \( \newcommand{\sech}{ \, \mathrm{sech} \, } \) \( \newcommand{\csch}{ \, \mathrm{csch} \, } \) \( \newcommand{\arcsinh}{ \, \mathrm{arcsinh} \, } \) \( \newcommand{\arccosh}{ \, \mathrm{arccosh} \, } \) \( \newcommand{\arctanh}{ \, \mathrm{arctanh} \, } \) \( \newcommand{\arccoth}{ \, \mathrm{arccoth} \, } \) \( \newcommand{\arcsech}{ \, \mathrm{arcsech} \, } \) \( \newcommand{\arccsch}{ \, \mathrm{arccsch} \, } \)

17Calculus Differential Equations - Reduction of Order

17Calculus
Single Variable Calculus
Derivatives
Integrals
Multi-Variable Calculus
Precalculus
Functions

This technique takes a second-order, linear differential equation with one known solution and reduces the equation to a first-order, linear equation that may possibly be solved using a first-order technique. In general, the idea can be applied to even higher order equations but, due to complexity of integration, this technique is really only used on second-order equations. However, it can still be useful in many cases.

classification: second-order, linear, homogeneous

\(y'' + p(t)y' + q(t)y = 0\)

The idea is that we have an equation of the form \(y'' + p(t)y' + q(t)y = 0\) and we know one solution, \(y_1(t)\). To get a second solution, we try \(y_2=v(t)y_1(t)\), i.e. we assume that the second solution is equal to the first solution times some function of t. This may seem unusual but it works in many cases. Before we get into the details, let's watch this video.

Michel vanBiezen - Differential Equation - 2nd Order Reduction Method - General Method

video by Michel vanBiezen

Now, let's work through the calculus and see where it gets us.

For simplicity, letting \(y=y_2\), we have \(y=v(t)y_1(t)\). Taking the derivative with respect to t, we get \(y'=v'y_1+vy_1'\) and \(y''=v''y_1+2v'y_1'+vy_1''\).
To summarize, we have

\(y=vy_1\)

\(y'=v'y_1+vy_1'\)

\(y''=v''y_1+2v'y_1'+vy_1''\)

Next, we take these expressions and substitute them back into the original differential equation \(y'' + p(t)y' + q(t)y = 0\). After collecting terms, we get
\( y_1v'' + (2y_1'+py_1)v' + (y_1''+py_1'+qy_1)v = 0 \)
Notice that the expression in parentheses of the last term is just the original differential equation, which is zero. So we end up with
\( y_1v'' + (2y_1'+py_1)v' = 0 \)

Now, let \(w=v'\) in the last equation to get \( y_1w' + (2y_1'+py_1)w = 0 \). This is now a first-order, linear equation, which we can use to solve for w. Finally, we integrate w to get v and we are done.

Let's take a minute to watch the next video, which explains why this works.

PatrickJMT - Reduction of Order - Why It Works [13mins-27secs]

video by PatrickJMT

Specific Case - Constant Coefficients with Real, Repeated Roots

On the second-order, linear page, we introduced the idea that, in the case of real, repeated roots, we would have one solution \(y_1=e^{rt}\). To show that the second solution is \(y_2=ty_1\), we will use reduction of order in this example. (Test yourself by trying this on your own before looking at the solution.)

Let \(y_1=c_1e^{rt}\) be one solution to \(ay''+by'+cy=0\). Since r is a repeated root of the characteristic equation, we can write the differential equation as \(y''-2ry'+r^2y=0\). Use reduction of order to derive the second solution \(y_2=c_2te^{rt}\).

Problem Statement

Let \(y_1=c_1e^{rt}\) be one solution to \(ay''+by'+cy=0\). Since r is a repeated root of the characteristic equation, we can write the differential equation as \(y''-2ry'+r^2y=0\). Use reduction of order to derive the second solution \(y_2=c_2te^{rt}\).

Solution

For simplicity, we will write \(y_2=v(t)y_1(t)=v(t)c_1e^{rt}\) as \(y=cve^{rt}\).
Our first step is to calculate the derivatives. We will need to use the product rule.

\(y=cve^{rt}\)

\(y'=cvre^{rt}+cv'e^{rt} =\) \(ce^{rt}(vr+v')\)

\(y''=ce^{rt}[v'r+v''] + cre^{rt}[vr+v'] = \) \(ce^{rt}[v'r+v''+vr^2+v'r] =\) \(ce^{rt}[v''+2rv'+r^2v]\)

Now we substitute each of these into the original differential equation \(y''-2ry'+r^2y=0\).
\(ce^{rt}[v''+2rv'+r^2v]- \) \(2rce^{rt}[vr+v']+r^2cve^{rt}=0\)
\(ce^{rt}[v''+2rv'+r^2v-\) \(2r^2v-2rv'+r^2v]=0\)
The \(v\) and \(v'\) terms cancel, leaving only \(ce^{rt}v''=0\). Since \(ce^{rt}\) is never zero, we are left with \(v''=0\).
Now we integrate twice to get
\(v''=0 \to v'=k \to v=kt+p\) where k and p are the constants of integration.

Now we have \(y_2=ce^{rt}[kt+p]\). Next, we combine the two solutions into one. We were not asked to do this in the problem statement but doing this will allow us to explain what to do with all the constants.
\( \begin{array}{rcl} y &=& y_1+y_2 = ce^{rt}+ckte^{rt}+cpe^{rt} \\ &=& e^{rt}(c+cp)+kc(te^{rt}) \\ &=& c_1e^{rt}+c_2te^{rt} \\ &=& e^{rt}[c_1+c_2t] \end{array} \)
In the work above, we let \(c_1=c+cp\) and \(c_2=kc\), in essence just renaming the constants.

final answers

second solution

\(y_2=c_2te^{rt}\)

general solution

\(y=e^{rt}[c_1+c_2t]\)

Partial Differential Equations for Scientists and Engineers (Dover Books on Mathematics)

Practice

Unless otherwise instructed, find the second solution and the general solution to each differential equation using reduction of order. If initial conditions are given, solve the initial value problem also. Give your answers in exact terms and completely factored.

Solve \( x^2y'' + 5xy' - 5y = 0, x > 0; y_1 = x \)

Problem Statement

Solve \( x^2y'' + 5xy' - 5y = 0, x > 0; y_1 = x \)

Solution

PatrickJMT - 1814 video solution

video by PatrickJMT

Log in to rate this practice problem and to see it's current rating.

Solve \( x^2y'' - 3xy' + 4y = 0; y_1 = x^2 \)

Problem Statement

Solve \( x^2y'' - 3xy' + 4y = 0; y_1 = x^2 \)

Solution

MIP4U - 1815 video solution

video by MIP4U

Log in to rate this practice problem and to see it's current rating.

Solve \( t^2y'' - t(t+2)y' + (t+2)y = 0; y_1 = t \)

Problem Statement

Solve \( t^2y'' - t(t+2)y' + (t+2)y = 0; y_1 = t \)

Solution

Here are two videos solving this problem from two different instructors.

Michel vanBiezen - 1816 video solution

video by Michel vanBiezen

Educator.com - 1816 video solution

video by Educator.com

Log in to rate this practice problem and to see it's current rating.

Solve \( x^2y'' + 3xy' + y = 0; \) \( y_1 = 1/x \)

Problem Statement

Solve \( x^2y'' + 3xy' + y = 0; \) \( y_1 = 1/x \)

Solution

MIP4U - 1817 video solution

video by MIP4U

Log in to rate this practice problem and to see it's current rating.

Solve \( 4x^2y'' + y = 0; y_1 = \sqrt{x} \)

Problem Statement

Solve \( 4x^2y'' + y = 0; y_1 = \sqrt{x} \)

Solution

This is a Cauchy-Euler equation. You can find more discussion on Cauchy-Euler equations on the this 17calculus page.

blackpenredpen - 2585 video solution

video by blackpenredpen

Log in to rate this practice problem and to see it's current rating.

Really UNDERSTAND Differential Equations

Log in to rate this page and to see it's current rating.

To bookmark this page and practice problems, log in to your account or set up a free account.

Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

free ideas to save on books

Shop Amazon - Rent Textbooks - Save up to 80%

As an Amazon Associate I earn from qualifying purchases.

I recently started a Patreon account to help defray the expenses associated with this site. To keep this site free, please consider supporting me.

Support 17Calculus on Patreon

Practice Search

Practice Instructions

Unless otherwise instructed, find the second solution and the general solution to each differential equation using reduction of order. If initial conditions are given, solve the initial value problem also. Give your answers in exact terms and completely factored.

Do NOT follow this link or you will be banned from the site!

When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.

Links and banners on this page are affiliate links. We carefully choose only the affiliates that we think will help you learn. Clicking on them and making purchases help you support 17Calculus at no extra charge to you. However, only you can decide what will actually help you learn. So think carefully about what you need and purchase only what you think will help you.

We use cookies on this site to enhance your learning experience.

17calculus

Copyright © 2010-2022 17Calculus, All Rights Reserved     [Privacy Policy]     [Support]     [About]

mathjax.org
Real Time Web Analytics