## 17Calculus Differential Equations - Chebyshev's Equation

On this page, we discuss a special type of differential equation with polynomial coefficients called Chebyshev's Equation.

General Form: $$(1-t^2)y'' - ty' + ay = 0$$

Classification: second-order, linear, homogeneous

Chebyshev's Differential Equations

Chebyshev's equations are of the form $$\displaystyle{ (1-t^2)y'' - ty' + ay = 0 }$$ where a is a real constant. These seem specialized but they occur so often, they are worth discussing separately. These equations can be solved by using the substitution $$t = \cos( \theta )$$. This changes the differential equation into a form that can be solved more easily. See the practice problems for examples.

### Practice

Instructions - - Unless otherwise instructed, solve these Chebyshev differential equations using the techniques on this page.

$$(1-x^2)u'' - xu' + v^2u = 0$$; use $$x = \cos(\theta)$$

Problem Statement

$$(1-x^2)u'' - xu' + v^2u = 0$$; use $$x = \cos(\theta)$$

$$u = A\cos(v\arccos(x)) + B\sin(v\arccos(x))$$

Problem Statement

$$(1-x^2)u'' - xu' + v^2u = 0$$; use $$x = \cos(\theta)$$

Solution

### 621 video

video by Dr Chris Tisdell

$$u = A\cos(v\arccos(x)) + B\sin(v\arccos(x))$$

You CAN Ace Differential Equations

### Calculus Topics Listed Alphabetically

Single Variable Calculus

Multi-Variable Calculus

### Search Practice Problems

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem. The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free.

Introduction to Partial Differential Equations with Applications (Dover Books on Mathematics) Under Armour Clothing - Just Launched at eBags.com! Shop Amazon - Rent eTextbooks - Save up to 80% When using the material on this site, check with your instructor to see what they require. Their requirements come first, so make sure your notation and work follow their specifications.

DISCLAIMER - 17Calculus owners and contributors are not responsible for how the material, videos, practice problems, exams, links or anything on this site are used or how they affect the grades or projects of any individual or organization. We have worked, to the best of our ability, to ensure accurate and correct information on each page and solutions to practice problems and exams. However, we do not guarantee 100% accuracy. It is each individual's responsibility to verify correctness and to determine what different instructors and organizations expect. How each person chooses to use the material on this site is up to that person as well as the responsibility for how it impacts grades, projects and understanding of calculus, math or any other subject. In short, use this site wisely by questioning and verifying everything. If you see something that is incorrect, contact us right away so that we can correct it.