Power Rule Theorem 

For any rational number r, the function \(g(x)=x^r\) is differentiable, and \(\displaystyle{ \frac{d}{dx}[g(x)] = rx^{r1} }\). 
Note: We use the letter r here to emphasize that the exponent must be a rational number, i.e. it cannot be irrational, like \(\pi\), or a variable or anything other than a rational number. This detail will be extremely important very soon in your study of derivatives. 
How To Use The Power Rule
Basically the Power Rule Theorem says, if you have a term of the form \(x^r\) where r is a rational number, then the derivative of this is \(rx^{r1}\).
You think of this as taking the exponent and putting it in front of the term and then subtracting one from the exponent like this:
It helps to remember if you visualize the exponent moving, which is what we showed with the arrow. This idea works fine as long as there is no number in front of the x. If there is a number in front of the x, you just multiply the two numbers using the
constant multiple rule. It looks like this:
\( \displaystyle{ \frac{d}{dx}[ax^n] = a(nx^{n1}) }\).
The reason it works like this is because we use the constant multiple rule first, then the power rule. It looks like this.
Constant Multiple Rule 
\(\displaystyle{ \frac{d}{dx}[ax^n] = }\) \(\displaystyle{ a\frac{d}{dx}[x^n] }\) 

Power Rule 
\(\displaystyle{ a\frac{d}{dx}[x^n] = }\) \(\displaystyle{ a(nx^{n1}) }\) 
Okay, let's do some examples.
Example 1: 
\(\displaystyle{\frac{d}{dx}[x^3] = }\) \(\displaystyle{ 3x^{31} = 3x^2}\) 
Example 2: 
\(\displaystyle{\frac{d}{dx}[2x^3] = }\) \(\displaystyle{ 2\frac{d}{dx}[x^3] = }\) \(\displaystyle{ 2(3x^2) = 6x^2}\) 
As you get more practice, you probably won't need to do the two middle steps as shown in Example 2. You will probably just think of taking the coefficient 2 times the exponent 3 to get 6 out front.
Okay, now you are ready to try your hand at working some basic practice problems.
Basic Practice
Unless otherwise instructed, calculate the derivatives of the following functions using the power rule and the basic rules on the derivatives page (but do not use the limit definition of the derivative) giving your answers in simplified form.
\( f(x) = x^{10} \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = x^{10} \)
Final Answer 

\( 10x^9 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = x^{10} \)
Solution 

video by PatrickJMT 

Final Answer 

\( 10x^9 \) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = 3x^2 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 3x^2 \)
Final Answer 

\(\displaystyle{\frac{d}{dx}\left[3x^2\right]=6x}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 3x^2 \)
Solution 

\(\displaystyle{\frac{d}{dx}\left[3x^2\right]=3\frac{d[x^2]}{dx}=3(2x^1)=6x}\)
Final Answer 

\(\displaystyle{\frac{d}{dx}\left[3x^2\right]=6x}\) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = 7x^3 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 7x^3 \)
Final Answer 

\(\displaystyle{\frac{d}{dx}[7x^3]=21x^2}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 7x^3 \)
Solution 

\(\displaystyle{\frac{d}{dx}[7x^3]=7\frac{d[x^3]}{dx}=7(3x^2)=21x^2}\)
Final Answer 

\(\displaystyle{\frac{d}{dx}[7x^3]=21x^2}\) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = 5x^4 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 5x^4 \)
Final Answer 

\(\displaystyle{\frac{d}{dx}\left[5x^4\right]=20x^3}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 5x^4 \)
Solution 

\(\displaystyle{\frac{d}{dx}\left[5x^4\right]=5\frac{d[x^4]}{dx}=5(4x^3)=20x^3}\)
Final Answer 

\(\displaystyle{\frac{d}{dx}\left[5x^4\right]=20x^3}\) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( g(y) = y^4 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( g(y) = y^4 \)
Final Answer 

\(\displaystyle{\frac{d}{dy}\left[y^4\right]=4y^3}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( g(y) = y^4 \)
Solution 

\(\displaystyle{\frac{d}{dy}\left[y^4\right]=4y^{41}=4y^3}\)
Final Answer 

\(\displaystyle{\frac{d}{dy}\left[y^4\right]=4y^3}\) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = 2x^2 + 3x  17 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 2x^2 + 3x  17 \)
Final Answer 

\( y' = 4x + 3\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = 2x^2 + 3x  17 \)
Solution 

video by Krista King Math 

Final Answer 

\( y' = 4x + 3\) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( f(x) = 100  16x^2 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = 100  16x^2 \)
Final Answer 

\( f'(x) = 32x \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = 100  16x^2 \)
Solution 

video by Krista King Math 

Final Answer 

\( f'(x) = 32x \) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( f(x) = 4x  5 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = 4x  5 \)
Final Answer 

\( f'(x) = 4 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = 4x  5 \)
Solution 

video by Krista King Math 

Final Answer 

\( f'(x) = 4 \) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = x^6  7x^4 + 5/x \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = x^6  7x^4 + 5/x \)
Final Answer 

\( y' = 6x^5  28x^3  5x^{2} \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = x^6  7x^4 + 5/x \)
Solution 

video by Krista King Math 

Final Answer 

\( y' = 6x^5  28x^3  5x^{2} \) 
close solution

Log in to rate this practice problem and to see it's current rating. 

\( g(x) = x^{5/2} + 3x + 4 \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( g(x) = x^{5/2} + 3x + 4 \)
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

\(5x^46x+90x^{100}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \(5x^46x+90x^{100}\)
Solution 

video by Krista King Math 

close solution

Log in to rate this practice problem and to see it's current rating. 

When You Can't Use The Power Rule
There are two main situations where you can not use the power rule when you have an exponent.
First, when the term that has a power does not exactly match the derivative variable. In this case, the chain rule is required. Here are two examples.
Example 3: \(\displaystyle{\frac{d}{dx}[y^3]}\)
Notice here that the variable \\(y\\) in \\(y^3\\) does not match the \\(x\\) in \\(dx\\). So you can't use the power rule here. You need to use the chain rule.
Example 4: \(\displaystyle{\frac{d}{dx}\left[ (x^2+5)^3\right]}\)
In this case, the term \( (x^2+5) \) does not exactly match the x in dx. So you can't use the power rule here either (on the \(3\) power). The chain rule is required.
The second main situation is when the exponent is not a rational number.
This is an important detail to remember (and an example of why you need to read theorems carefully). For example, you can't use the power rule on \( g(t) = 2^t \) because t is not a rational number. Notice the difference between \( 2^t \) [cannot use power rule] and \( t^2 \) [can use power rule].
Also, you cannot use the power rule on \( x^{\pi} \) since \( \pi \) is not rational.
In these cases logarithmic differentiation is the way to go.
Okay, before working practice problems, take a few minutes to just sit back and watch this video. It shows lots of examples using the power rule and the basic rules (constant rule, constant multiple rule and addition and subtraction rules).
video by PatrickJMT 

Okay, try some of these intermediate level practice problems. Just as before, do not use the limit definition to calculate the derivative.
Intermediate Practice
Unless otherwise instructed, calculate the derivatives of the following functions using the power rule and the basic rules on the derivatives page (but do not use the limit definition of the derivative) giving your answers in simplified form.
\( f(x) = 2x^4 + 3x^{5/3}  4/x \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( f(x) = 2x^4 + 3x^{5/3}  4/x \)
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

\(\displaystyle{ h(x) = \frac{1}{\sqrt[3]{x}} }\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \(\displaystyle{ h(x) = \frac{1}{\sqrt[3]{x}} }\)
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

\(\displaystyle{ p(q) = \frac{3}{\pi}\sqrt{q^{4.1}} }\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \(\displaystyle{ p(q) = \frac{3}{\pi}\sqrt{q^{4.1}} }\)
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

What is \(f'(64)\) for \( f(x) = x + 3\sqrt{x} + 4\sqrt[3]{x} \)?
Problem Statement 

What is \(f'(64)\) for \( f(x) = x + 3\sqrt{x} + 4\sqrt[3]{x} \)?
Solution 

video by PatrickJMT 

close solution

Log in to rate this practice problem and to see it's current rating. 

\( y = \sqrt[5]{x} + 4\sqrt{x^5} \)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \( y = \sqrt[5]{x} + 4\sqrt{x^5} \)
Solution 

video by Krista King Math 

close solution

Log in to rate this practice problem and to see it's current rating. 

\(\displaystyle{y=\frac{x^2+4x+3}{\sqrt{x}}}\)
Problem Statement 

Calculate the derivative of this function using the power rule and the basic derivative rules (but do not use the limit definition of the derivative). Give your answer in exact, simplified form. \(\displaystyle{y=\frac{x^2+4x+3}{\sqrt{x}}}\)
Solution 

video by Krista King Math 

close solution

Log in to rate this practice problem and to see it's current rating. 

Okay, you are ready to move on. If you need a suggestion on where to go next, calculating higher order derivatives is the logical next step. 
You CAN Ace Calculus
external links you may find helpful 

The Unit Circle
The Unit Circle [wikipedia]
Basic Trig Identities
Set 1  basic identities  

\(\displaystyle{ \tan(t) = \frac{\sin(t)}{\cos(t)} }\) 
\(\displaystyle{ \cot(t) = \frac{\cos(t)}{\sin(t)} }\) 
\(\displaystyle{ \sec(t) = \frac{1}{\cos(t)} }\) 
\(\displaystyle{ \csc(t) = \frac{1}{\sin(t)} }\) 
Set 2  squared identities  

\( \sin^2t + \cos^2t = 1\) 
\( 1 + \tan^2t = \sec^2t\) 
\( 1 + \cot^2t = \csc^2t\) 
Set 3  doubleangle formulas  

\( \sin(2t) = 2\sin(t)\cos(t)\) 
\(\displaystyle{ \cos(2t) = \cos^2(t)  \sin^2(t) }\) 
Set 4  halfangle formulas  

\(\displaystyle{ \sin^2(t) = \frac{1\cos(2t)}{2} }\) 
\(\displaystyle{ \cos^2(t) = \frac{1+\cos(2t)}{2} }\) 
Trig Derivatives
\(\displaystyle{ \frac{d[\sin(t)]}{dt} = \cos(t) }\) 
\(\displaystyle{ \frac{d[\cos(t)]}{dt} = \sin(t) }\)  
\(\displaystyle{ \frac{d[\tan(t)]}{dt} = \sec^2(t) }\) 
\(\displaystyle{ \frac{d[\cot(t)]}{dt} = \csc^2(t) }\)  
\(\displaystyle{ \frac{d[\sec(t)]}{dt} = \sec(t)\tan(t) }\) 
\(\displaystyle{ \frac{d[\csc(t)]}{dt} = \csc(t)\cot(t) }\) 
Inverse Trig Derivatives
\(\displaystyle{ \frac{d[\arcsin(t)]}{dt} = \frac{1}{\sqrt{1t^2}} }\) 
\(\displaystyle{ \frac{d[\arccos(t)]}{dt} = \frac{1}{\sqrt{1t^2}} }\)  
\(\displaystyle{ \frac{d[\arctan(t)]}{dt} = \frac{1}{1+t^2} }\) 
\(\displaystyle{ \frac{d[\arccot(t)]}{dt} = \frac{1}{1+t^2} }\)  
\(\displaystyle{ \frac{d[\arcsec(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 1}} }\) 
\(\displaystyle{ \frac{d[\arccsc(t)]}{dt} = \frac{1}{\abs{t}\sqrt{t^2 1}} }\) 
Trig Integrals
\(\int{\sin(x)~dx} = \cos(x)+C\) 
\(\int{\cos(x)~dx} = \sin(x)+C\)  
\(\int{\tan(x)~dx} = \ln\abs{\cos(x)}+C\) 
\(\int{\cot(x)~dx} = \ln\abs{\sin(x)}+C\)  
\(\int{\sec(x)~dx} = \) \( \ln\abs{\sec(x)+\tan(x)}+C\) 
\(\int{\csc(x)~dx} = \) \( \ln\abs{\csc(x)+\cot(x)}+C\) 
To bookmark this page and practice problems, log in to your account or set up a free account.
Single Variable Calculus 

MultiVariable Calculus 

Differential Equations 

Precalculus 

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.
 
The 17Calculus and 17Precalculus iOS and Android apps are no longer available for download. If you are still using a previously downloaded app, your app will be available until the end of 2020, after which the information may no longer be available. However, do not despair. All the information (and more) is now available on 17calculus.com for free. 


Shop eBags.com, the leading online retailer of luggage, handbags, backpacks, accessories, and more! 
Practice Instructions
Unless otherwise instructed, calculate the derivatives of the following functions using the power rule and the basic rules on the derivatives page (but do not use the limit definition of the derivative) giving your answers in simplified form.