This page covers the first three basic rules when taking derivatives, the constant rule, constant multiple rule and the addition/subtraction rule.

| ||
---|---|---|

Constant Rule

The constant rule is the simplest and most easily understood rule. The derivative calculates the slope, right? So, if you are given a horizontal line, what is the slope? Right! The slope is zero. That's it. That's the slope of every horizontal line. We can write the equation of a horizontal line as \(f(x)=c\) where \(c\) is a real number. Since these are always horizontal lines, the slope is zero. Therefore, the derivative of all constant functions (horizontal lines) is zero. We can derive this idea from the limit definition as follows. If \(f(x)=c\)
\[ f~'(x) = \lim_{h \to 0}{\frac{f(x+h) - f(x)}{h}} = \lim_{h \to 0}{\frac{c - c}{h}} = \lim_{h \to 0}{0} = 0 \]
Notice that *c* is gone from the final answer, \(f~'(x)=0\), so this holds for all horizontal lines. Thinking about this, it makes sense intuitively, right?

Constant Multiple Rule

This rule works as you would expect. Mathematically, it looks like this. \[ \frac{d}{dx}[cf(x)] = c \frac{d}{dx}[f(x)] \] Nothing surprising, just pull out the constant and take the derivative of the function. This is discussed in more detail with examples on the power rule page.

Addition and Subtraction Rules

When you have two functions that are added or subtracted, you just take the derivative of each individually. Mathematically, it looks like this.
\[ \frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)] \]
Nothing surprising or tricky here. It works just as you would expect.

[However, you will find out soon that this idea does NOT hold for multiplication and division. We have some special rules for those called the product rule and quotient rule.]

You will get plenty of chances to practice these techniques on the next page discussing the power rule.

Really UNDERSTAND Calculus

To bookmark this page, log in to your account or set up a free account.

Do you have a practice problem number but do not know on which page it is found? If so, enter the number below and click 'page' to go to the page on which it is found or click 'practice' to be taken to the practice problem.

| |

free ideas to save on books |
---|

We use cookies to ensure that we give you the best experience on our website. By using this site, you agree to our Website Privacy Policy.