Limits Derivatives Integrals Infinite Series Parametrics Polar Coordinates Conics
Epsilon-Delta Definition
Finite Limits
One-Sided Limits
Infinite Limits
Trig Limits
Pinching Theorem
Indeterminate Forms
L'Hopitals Rule
Limits That Do Not Exist
Continuity & Discontinuities
Power Rule
Product Rule
Quotient Rule
Chain Rule
Trig and Inverse Trig
Implicit Differentiation
Exponentials & Logarithms
Logarithmic Differentiation
Hyperbolic Functions
Higher Order Derivatives
Slope, Tangent, Normal...
Linear Motion
Mean Value Theorem
1st Deriv, Critical Points
2nd Deriv, Inflection Points
Related Rates Basics
Related Rates Areas
Related Rates Distances
Related Rates Volumes
Definite Integrals
Integration by Substitution
Integration By Parts
Partial Fractions
Improper Integrals
Basic Trig Integration
Sine/Cosine Integration
Secant/Tangent Integration
Trig Integration Practice
Trig Substitution
Linear Motion
Area Between Curves
Arc Length
Surface Area
Exponential Growth/Decay
Laplace Transforms
Describing Plane Regions
Infinite Series
nth-Term Test
Geometric Series
Alternating Series
Telescoping Series
Ratio Test
Limit Comparison Test
Direct Comparison Test
Integral Test
Root Test
Absolute Convergence
Conditional Convergence
Power Series
Taylor/Maclaurin Series
Radius of Convergence
Interval of Convergence
Remainder & Error Bounds
Fourier Series
Study Techniques
Choosing A Test
Infinite Series Table
Practice Problems
Exam Preparation
Exam List
Parametric Curves
Parametric Surfaces
Slope & Tangent Lines
Arc Length
Surface Area
Polar Coordinates
Slope & Tangent Lines
Arc Length
Surface Area
Conics in Polar Form
Vectors Vector Functions Partial Derivatives/Integrals Vector Fields Laplace Transforms Tools
Unit Vectors
Dot Product
Cross Product
Lines and Planes
Angle Between Vectors
Direction Cosines/Angles
Vector Projections
Triple Scalar Product
Triple Vector Product
Vector Functions
Projectile Motion
Unit Tangent Vector
Principal Unit Normal Vector
Arc Length
Arc Length Parameter
MVC Practice Exam A1
Partial Derivatives
Directional Derivatives
Lagrange Multipliers
Tangent Plane
MVC Practice Exam A2
Partial Integrals
Describing Plane Regions
Double Integrals-Rectangular
Double Integrals-Applications
Double Integrals-Polar
Triple Integrals-Rectangular
Triple Integrals-Cylindrical
Triple Integrals-Spherical
MVC Practice Exam A3
Vector Fields
Conservative Vector Fields
Potential Functions
Parametric Curves
Line Integrals
Green's Theorem
Parametric Surfaces
Surface Integrals
Stokes' Theorem
Divergence Theorem
MVC Practice Exam A4
Laplace Transforms
Unit Step Function
Unit Impulse Function
Square Wave
Shifting Theorems
Solve Initial Value Problems
Describing Plane Regions
Parametric Curves
Linear Algebra Review
Word Problems
Mathematical Logic
Calculus Notation
Prepare For Calculus
Practice Exams
17calculus on YouTube
More Math Help
Tools and Resources
Academic Integrity
Learning/Study Techniques
Math/Science Learning
Memorize To Learn
Music and Learning
Instructor or Coach?
Math Books
How To Read Math Books

You CAN Ace Calculus

17calculus > polar coordinates

differential equations

Polar Coordinates

Polar coordinates is one of those topics that can be taught in many different courses. Some students come across the topic in physics for the first time. Sometimes, it's in precalculus or trig. No matter what course you are in right now, you will find everything you need here on polar coordinates. If you've already learned this topic, take some time to review the material on these pages and watch a few videos anyway, so that it is fresh in your mind.

Basic Idea of Polar Coordinates

You should already be familiar with graphing in rectangular coordinates (sometimes called cartesian coordinates). We can use trigonometry to describe the same point(s) or graph another way, as shown in plot 1.

From basic trig, you know that a point in the plane can be described as \((x,y)\) or as \(( r \cos(\theta), r \sin(\theta) ) \). Comparing these two forms gives you the equations

\( x = r \cos(\theta) \)


\( y = r \sin(\theta) \)

These equations are used to convert between polar coordinates and rectangular coordinates.

Remember from trig that angles can be described in an infinite number of ways, since \( \theta = \theta + 2\pi \) and \(\theta = \theta - 2\pi\). It is always best to use the smallest possible angle in the interval \( (-\pi, \pi]\) or \( [0, 2\pi) \) or whatever is required by the context.


plot 2

Source: Wikipedia - Polar Coordinate System

Note: These angles are measured in degrees. However, in calculus we almost always specify angles in radians.

One of the biggest differences you will find between trig and polar coordinates is that in trig, r in the above equation is usually \(1\). Trig focuses on the unit circle (when \(r=1\)). However, in polar coordinates we generalize the equations so that r is usually not \(1\).

The positive x-axis is called the polar axis, labeled L in plot 2 and the point O is called the pole. All angles are measured from the polar axis with positive angles in a counter-clockwise direction.

Polar coordinates are just parametric equations where the parameter is the angle \(\theta\) and r is a function of \(\theta\). It will help you to understand polar coordinates if you have a good understanding of parametrics. Go to the parametrics section for more information.

Okay, it's time to watch some videos. This first video is really good to give you an overview of polar coordinates.

IntegralCALC - Overview of Polar Coordinates

Here is another good video introduction to polar coordinates. He uses graphs and examples very effectively in this video.

PatrickJMT - Introduction to Polar Coordinates

Okay, now you know the basics of polar coordinates and you can work most problems you come across. However, if you really want to understand polar coordinates, then this video clip is good to watch. It gives a more indepth discussion with some very good examples, some unique, which will help you a lot.

MIT OCW - Understand Polar Coordinates

With the basics of polar coordinates under your belt, now it is time to work directly with the points and equations to convert between rectangular and polar coordinates. You will find discussion, videos and practice problems on the next page.

next: converting to/from polar coordinates →

Search 17Calculus

menu top search
menu top search 17